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Automated Spectrogram Analysis for Meteor Head Echoes

C. Powell 1

The Meteor Echo Spectrogram Analysis (MESA) program is developed to automatically identify meteor head
echoes in spectrograms generated by forward-scatter radio meteor detection. The program is both extensible
and flexible, allowing calculations such as line-of-sight approach and recede velocities, duration, and maximum
intensity. A detection sensitivity of 0.790 is achieved, with an improved sensitivity of 0.875 when only low-noise
spectrograms (∼ 2

3
of the data) are analysed. The MESA program cannot fully replace manual analysis of

spectrograms, but greatly reduces the volume of data that needs processing.
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1 Introduction

The aim is to produce a computer program that
takes spectrogram images generated by forward-scatter
radio meteor detection as input, and identifies meteor
head echoes in the spectrogram. The program may also
make an estimate of the approach & recede velocity,
maximum intensity, start time, end time, and duration,
of each identified meteor echo.

The computer application uses a number of image
processing techniques applied in a manner motivated
by the characteristic shape of meteor echoes in spectro-
grams, to identify the ‘centre’ of each echo based on a
centre of mass algorithm, which uses RGB pixel values
as weights. Velocities may then be estimated using the
Doppler equation and identification of the ‘start’ and
‘end’ of each echo, again using image processing tech-
niques.

In order to verify the accuracy of the program, re-
sults are compared to manual calculations of a random
selection of data over a timespan of 1 week to determine
the sensitivity of the program.

As with all methods of visualising data, spectro-
grams lose some of the original data (i.e. the radio
signal from detection is not kept). However, spectro-
grams are often the only practical way that data can be
archived for an observer - no ‘level 1’ data is available,
so automated spectrogram analysis is a useful tool.

2 Background

The theory behind forward-scatter radio meteor de-
tection and the resulting meteor echo characteristics in
spectrograms is discussed, as well as necessary theory
for velocity estimation, and past work to identify me-
teor echoes in spectrograms.

2.1 Spectrogram generation

Detecting meteors using forward-scatter radio uses a
transmitter broadcasting over a wide area of sky,
through which meteors pass. The ionised trail of a me-
teor reflects the radio signal, which can then be picked
up by a receiving station.
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Figure 1 – Spectrogram generated by Spectrum Lab v3.0

Programs such as Spectrum Lab a receive the signal
generated by radio detection and produce spectrograms
(Figure 1), which are three-dimensional representations
of the data: the horizontal axis is time, the vertical axis
is (modulated) frequency, and the third axis is signal
intensity, represented using a colour scale. Often the
CMRmap colour scale is used (Figure 2). Spectrograms
are sometimes referred to as ‘waterfall’ plots.

Figure 2 – CMRmap colour scale

Spectrograms most often cover a 5-minute interval,
so a single detection station may generate 288 spectro-
grams per day: manual analysis of this is not practical,
hence automated analysis is necessary.

2.2 Meteor echo characteristics

Assuming upper sideband forward-scatter radio de-
tection is used, and the spectrogram uses a CMR colour
scale, meteor echoes appear as white (high intensity)
vertical streaks, often with highest intensity close to
the carrier wave (CW) frequency. Note that often the

aAvailable at http://www.qsl.net/dl4yhf/spectra1.html
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CW frequency is demodulated and shifted, so that the
direct signal, when visible, does not appear in the spec-
trogram at the transmitted CW frequency.

The CW frequency corresponds to zero line-of-sight
(LOS) velocity of the meteor. Greater frequencies than
CW correspond to greater LOS approach velocity, and
lower frequencies than CW correspond to greater LOS
recede velocity. Velocity can be (naïvely) calculated
using the Doppler equation

∆f
f

=
v

c
(1)

where c is the speed of light in a vacuum. This assumes
a simple structured echo; more complex echoes require
more detailed techniques for velocity estimation. Note
also that the Doppler shift is in fact made up of two
parts; a shift owing to the radial velocity between the
meteor and transmitting station, and a shift owing to
the radial velocity between the meteor and receiving
station. Only the Doppler shift of the former radial ve-
locity is considered, limiting the accuracy of the velocity
estimate.

Some radar systems receive a direct signal from the
transmitter, meaning the CW frequency (after shift-
ing/demodulating) is immediately obvious. For other
systems the resultant CW frequency may be determined
by averaging many images together until the direct sig-
nal is apparent.

2.3 Past work
Echo-counting software has been developed before,

for example Noguchi & Yamamoto (2008) developed an
image processing tool to automatically analyse
HROFFT spectrograms however no capacity for fur-
ther calculations is included. A 90% agreement between
manual and automatic counting was found. Artificial
Neural Networks have also been used to attempt to au-
tomatically identify echoes in spectrograms (Roman &
Buiu, 2015).

3 Design
An example spectrogram (Figure 1) is used to show

each step of the processing & analysis.

3.1 Data assumptions
The MESA program assumes that data is provided

with a size of 800 × 1133 pixels, and the CMRmap
colour scale is used, with a detection setup using upper-
sideband forward-scatter radio detection. However, set-
tings can be modified to remove these assumptions and
allow use of any colour scale and image dimensions nec-
essary. Namely, the number of pixels to be removed
on each edge (to remove elements such as the legend
and frequency scale), and the RGB channel to be ex-
tracted. The program may also be modified to use
lower-sideband radio detection.

3.2 Data pipeline
It is envisaged that the automated echo detection

system is part of a more complex data pipeline where

Figure 3 – JPEG compression artefacts

large, high-quality images are passed to this automated
detection system where they are processed and subse-
quently saved to an archive in a lower quality format to
reduce the necessary amount of memory storage. This
removes issues raised by compression artefacts, for ex-
ample in JPEG compression (Figure 3). If lossless com-
pression is used prior to processing, this pipeline is not
necessarily needed.

3.3 Pre-processing

Irrelevant data must be removed from the image to
aid the analysis, namely the colour scale, legend, fre-
quency scale, and timestamps. The user must enter
a depth in pixels for each border of the image so that
these can be removed. Spectrograms produced by Spec-
trum Lab also have vertical dashed bars indicating 30
second time increments, which must be removed. Since
use of the CMRmap colour scale is assumed, only the
red RGB channel is extracted from the image. The blue
and green channels hold redundant data: most noise ap-
pears blue, whilst echoes are red to white. The image is
also stretched with horizontal scale-factor 3, for reasons
discussed in Section 3.5, producing Figure 4.

The colour scale must also be identified within the
image to allow calculation of maximum intensity for
each meteor echo.

3.4 Denoising

Before echoes can be identified in the image, noise
must be removed. There is often a large amount of noise
throughout the image, as can be seen from the blue
spots in Figure 1. The denoising process uses thresh-
olding, erosion, a total variation filter, and dilation.

The image is first dynamically thresholded using the
Otsu method (Otsu, 1979). This is a common first step
in image segmentation algorithms, and is a clustering-
based threshold method which minimises the intra-class
variance of the image’s gray-level histogram, splitting
the image into ‘foreground’ and ‘background’. The back-
ground is removed by replacing every ‘background’ pixel
with value 0. The result is an image with significantly
reduced noise, Figure 5.
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Figure 4 – Spectrogram after pre-processing.
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Figure 5 – Spectrogram after thresholding.
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Figure 6 – Spectrogram after erosion, denoising, and dilation.

Erosion and dilation filters (Gonzalez & Woods,
2002) set each pixel to the minimum and maximum
(respectively) over all pixels in a neighbourhood cen-
tred at the given pixel. Erosion filters shrink bright
regions and enlarge dark regions, whilst dilation filters
do the opposite. Erosion often breaks up regions and
removes low-σ noise (large signal-to-noise ratio), whilst
dilation rejoins broken regions. A combination of the
two, with a denoising filter in between, allows shapes to
be smoothed, broken regions reconnected, and remain-
ing noise removed (Figure 6).

A total-variation Chambolle denoising filter (Cham-
bolle, 2004) is used due to its property of preserving
edges whilst smoothing noise in flat regions, even with
low signal-to-noise ratios.

3.5 Echo identification

Owing to the characteristic shape of meteor echoes
as streaks, a kernel convolution (with kernel in Figure 7)
replicating this shape is used to identify regions of the
image that may contain echoes. A large kernel is used
since echoes are large relative to the image dimensions
(800 by 1133 for comparison data), on the order of 40
pixels in height and 10 pixels in width, at minimum.
This is a common image processing technique, though
is often only part of a more complex algorithm (S̆ustr,
2013). It is advantageous to use this method before re-
gion identification since artefacts may remain in the im-
age after denoising, whether due to radio effects such as
tropospheric propagation and interference, or artefacts
of the prior processing, and these are often dissimilar to
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Figure 7 – Normalised kernel used for streak convolution.

the echoes in shape, so are easily removed (or at least
nullified) with a streak convolution (see Figure 8).

Region identification is performed using connected-
component analysis (CCA) (Dillencourt et al., 1992).
This is a method of labelling image pixels based on con-
nected components satisfying a given heuristic. Many
algorithms exist and choice depends on convenience,
availability for implementation in a given language, and
speed. 4-connectivity is used in the interest of process-
ing speed, since echo shapes are assumed to be basic and
do not require 8-connectivity. Once regions are labelled,
centres of mass are calculated with the R component of
pixel RGB values as weights. This provides an approx-
imate location for the centre of the echo. These centres
are marked with crosses in the final results (Figure 5.1).
This process gives Figure 9.

The dilation filter in the denoising process does not
always reconnect broken regions, so sometimes echoes
may still be split in two after this filter is applied. Simi-
larly, the appearance of an echo in the spectrogram may
simply be split on detection (see Figure 10). Thus, once
images have been split into regions, these regions must
be rejoined. This is done by identifying any region that
overlaps horizontally with another region. These are
then recategorised as the same region. Note that verti-
cal overlapping is not considered since the time axis is
horizontal, so horizontally distinct regions occur at dis-
tinct times and should not be considered the same echo.
Despite this, some echoes occur so close in time that
they overlap slightly. In order to separate these echoes
the image is stretched horizontally, giving greater reso-
lution in time.

In some spectrograms erroneous detections occur,
primarily due to radio artefacts, and these can be iden-
tified from their vertical position: the majority of echoes
are underdense which have their centre of mass close to
the CW frequency, so by considering vertical locations
outliers can be removed. The definition of an outlier
as beyond 1.5× the inter-quartile range of the vertical

centre of mass locations is used, which is calculated on
a per-image basis.

3.6 Calculations
In order to calculate the start and end time of a

given echo, the horizontal location (in pixels) of the
echo region bounding box is used, as well as a user-
specified seconds-per-pixel value and the image’s times-
tamp. Duration is then easily calculated from the start
and end times, which are given in the timezone the orig-
inal spectrogram uses (usually UTC).

The top and bottom locations of the echo region
bounding box are used to estimate approach and recede
velocities using the Doppler equation (1), which requires
a user-specified Hz-per-pixel value and the demodulated
CW frequency vertical location in the image, specified
in pixels. Results are given in kilometres per second.

Maximum intensity is calculated by identifying the
pixel in a given echo region with the greatest value rel-
ative to the colour scale in the image, which requires
the user to locate the scale within the image during the
pre-processing stage.

An overview of the design of the MESA (meteor echo
spectrogram analysis) program is given in Figure 11.

4 Implementation details
The program is written in Python 3 (available at

www.python.org).

4.1 Libraries
Libraries used are:

• NumPy (available at www.numpy.org) is a mod-
ule used for computation throughout the program
since it is optimised for vectorised data, so is ef-
ficient for working with images when represented
as arrays.

• Matplotlib (available at matplotlib.org) is a
plotting tool used to display the spectrogram and
graphics associated with analysis, such as circling
the estimated echo centres.

• OpenCV (available at docs.opencv.org/

3.0-beta/modules/core/doc/intro.html) is a
computer vision module used for common image
processing techniques such as denoising, erosion
filters, and dilation filters.

• SciPy (available at www.scipy.org) is a scien-
tific computing library used here for connected-
component analysis.

• Scikit-Image (available at scikit-image.org) is
an image processing library providing efficient im-
plementations of Otsu thresholding and TV
Chambolle denoising.

4.2 Pseudocode
Pseudocode for important processes in the program

are shown in appendices B, C, and A, namely rejoining
of broken echoes, estimation of max intensity for a given
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Figure 8 – Spectrogram after thresholding.
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Figure 9 – Spectrogram after region labelling.

Figure 10 – Some echoes may be split vertically.

list of echo centre-of-masses, and removal of lines in
pre-processing. Variables defined earlier in the program
are underlined (and thus passed as an argument to the
function if needed).

Algorithm 1 in appendix A shows the process for
removing the vertical lines which indicate 30 second in-
crements in the spectrogram. The mean RGB value of
the bottom pixel of each line is checked and the greatest
9 are chosen (assuming there are 9 lines). The bottom
pixel is checked since in the images the lowest pixel is
where the bar starts, so is white, thus the mean RGB
value of this pixel is approximately 255.

Algorithm 2 in appendix B shows the process for
reconnecting broken echo regions. A vertical column
strictly containing the given echo region is checked for
other regions. Those identified are recategorised as part
of the original region.

Algorithm 3 in appendix C is used to estimate the
maximum intensity of a given detected echo. Each pixel
in the region has its maximum intensity calculated: first
the index is found for the part of the colour scale with
the minimum colour difference, then linear interpolation
between the corresponding intensity at the start and
end of the scale gives the pixel’s intensity. The maxi-
mum of these intensities and the corresponding pixel is
then identified.

4.3 Calculations

Formulae for the various calculations are shown be-
low using variables entered by the user (in bold), or
calculated previously in the program (in italics).
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Pre-processing

Denoising

Echo identification

Calculations

Read image

Remove edges/junk

Remove dotted lines

Extract R channel from RGB

Stretch image horizontally

Identify colour scale

Otsu thresholding

Erosion filter

TV Chambolle denoising

Dilation filter

Streak convolution

Connected component analysis

Centre of mass calculation

Outlier identification

Approach & recede velocity

Not outlier

Display spectrogram with identified echoes

Outlier [displayed in different colour]

Max intensity

Duration, start & end time

Figure 11 – Flowchart of MESA program.

Approach & recede velocity

frec = (bottom −CWfreq) ·HzPerPixel

fappr = (CWfreq − top) ·HzPerPixel

vrec =
c · frec

fCW

vappr =
c · fappr

fCW

(2)

where bottom is the distance in pixels between the
bottom of the echo region and the top edge of the image;
top is defined similarly, CWfreq is the vertical location
(in pixels) of the CW frequency in the spectrogram,
HzPerPixel indicates Hz per vertical pixel, c is the
speed of light in a vacuum, given in km · s−1. Results
are given to an accuracy of 3dp.

Max intensity

IdB =
i

l
· (smin − smax)− soffset (3)

where i is the index of the colour scale pixel with
the minimum colour difference to the current pixel, and
l is the length of the colour scale in pixels. smax, smin

are the maximum and minimum intensities on the scale
when offset by soffset so that smin is 0. This variable,
despite always being 0, is kept to aid clarity.

Start & end time

∆tstart = sPerPixel ·

[

wimage −
(

left + nllines

)

]

tstart = timage −∆tstart

∆tend = sPerPixel ·
[

wimage − (right + nrlines)
]

tend = timage −∆tend

(4)

where sPerPixel identifies the number of seconds
per horizontal pixel, wimage is the width of the image,
right is the distance in pixels of the right side of the
echo region (where the left edge of the image is 0 and
the right edge of the image is wimage), left is defined
similarly, nl,rlines is the number of lines removed between
the left edge of the image and the left (or right) edge of
the echo region, used to adjust the time based on how
many pixels were removed in preprocessing.

5 Comparison
To test the performance of the MESA program, the

sensitivity was calculated from a set of spectrograms
analysed both manually and automatically. The equiva-
lent of one day of data was analysed. Since each spectro-
gram covers 5 minutes, 288 images must be processed:
first, every fifth spectrogram is selected from a week of
data 15th August 2016 to 21st August 2016, inclusive,
from which a random sample of 288 images was taken.
A short timescale was used so that changes in the de-
tection setup and spectrogram generation, such as the
colour scale parameters, are unlikely to have occurred.

The performance of the MESA program was then
analysed by manually processing the 288 images with
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the program results overlaid and recording the number
of true positives (successful detections), false positives
(non-head echo detections), and false negatives (missed
head echoes). This indicates the proportion of detec-
tions that are actually head echoes, and how often head
echoes are missed. In order to test the performance
of the program relative to how noisy the spectrogram
is, the mean-squared error (MSE) of the pixel values
was calculated as a measure of noise, so that the rela-
tionship with sensitivity can be seen. The sensitivity
of the MESA program was then determined as the av-
erage proportion of true positives per spectrogram out
of the true positives and false negatives for the same
spectrogram. The sensitivity was then calculated for
spectrograms with MSE below a given threshold and
plotted against these thresholds, which ranged from 50
to 120. A histogram of the MSE noise is shown in Fig-
ure 12.
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Figure 12 – Histogram of mean-squared error noise of the
spectrogram data.

No analysis was made of the accuracy of regions
identified around each head echo: the choice of bound-
ing region is largely subjective and it would be almost
impossible to quantify the performance of the program.
The important aspect of the program is that it func-
tions consistently, considering one of the purposes of
automated analysis is to give an objective way to iden-
tify echo regions to allow comparison of different sets of
data, whilst manual analyses by two different persons
may disagree.

5.1 Results

Performance analysis In the 288 images there are
in total 1048 successful detections, 1244 false detec-
tions, and 255 missed detections, resulting in a per-
spectrogram average of 3.64 successful detections, 4.32
false detections, and 0.89 missed detections.

This shows that 54% of detections are not actually
head echoes. However, 69% of spectrograms have no
missed detections, and excluding blank spectrograms
(that is, no successful, false, or missed detections) then
87% of spectrograms have no missed detections.

The sensitivity of the program has a clear inverse re-
lationship with the MSE of the image being processed:
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Figure 13 – Sensitivity against MSE threshold, with per-
centage of images with MSE less than the threshold.

see Figure 13. Including all spectrograms, the sensi-
tivity of the program is 0.790. Including spectrograms
only with MSE noise < 60, which accounts for ∼ 65%
of the spectrograms, the sensitivity of the program rises
to 0.875.

Example spectrograms Certain artefacts in spec-
trograms result in poor performance of the MESA pro-
gram, for example high noise (Figure 14b), direct sig-
nals and aeroplanes (Figure 14c), and tropospheric prop-
agation (Figure 14d). An ideal spectrogram is shown in
Figure 14a.

6 Discussion

6.1 MESA performance
These results show that whilst a large proportion of

the programs detections are not head echoes, relatively
few head echoes are missed. The program performs
well on spectrograms with low noise (MSE < 60): these
are most commonly spectrograms without direct signal
and other artefacts. Large amounts of noise (specifically
signal-to-noise ratio) means the program cannot distin-
guish between echoes and noise. Thus different types of
noise or artefacts impede the program in different ways.
When the noise arises as ‘blobs’, the streak convolution
removes this. If the noise arises as streaks, for exam-
ple when aeroplanes have been detected (in which case
there are effectively multiple very short streaks next to
each other), the streak convolution doesn’t remove the
noise and the program performs poorly. This also oc-
curs when there is a direct signal. When the colour
scale is not calibrated to eliminate noise, the denoising
process it not capable of removing it.

The results demonstrate that the MESA program
does not perfectly replace manual processing, however
it allows significant reduction in the volume of data that
must be manually processed.

6.2 Limitations
Available data Only 50% quality JPEG spectro-
grams were available for the analysis of MESA perfor-
mance, whilst the program is envisaged for use with
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(a) The ideal spectrogram: the MESA program performs well.
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(b) Spectrogram with high noise.
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(c) Spectrogram containing artefacts from aeroplanes, and direct signal.
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(d) Spectrogram containing tropospheric propagation.

Figure 14 – Examples of spectrograms and the performance of the MESA program on them.
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higher-quality spectrograms, where the program will
perform better, as demonstrated by the greater sensitiv-
ity at lower noise thresholds. Also, higher quality spec-
trograms will have fewer compression artefacts, which
hinder performance. For example, the noise created by
JPEG compression around the vertical time markers
can cause false detections.

Resolution The resolution of the spectrogram image
determines the resolution of the output data. Velocity
data are displayed up to a resolution determined by the
Hz-per-pixel value. Given a frequency resolution ferr,
the velocity resolution is c·ferr

f0

. The time resolution is
determined by the seconds-per-pixel value.

Velocity calculation Calculation of velocity from a
spectrogram is non-trivial and requires a detailed de-
scription of the detection geometry. In this paper we
describe only a naïve method, which only gives accu-
rate results for clearly defined head echoes that are sim-
ple structured, that is, conform to the expected ‘streak’
shape. However, identification of the head echo region
may allow accurate calculation of velocity when more
robust techniques and more detailed detection informa-
tion available.

Colour scale Depending on the colour scale config-
uration, the greater intensity end of the scale may be
saturated in the image (Figure 15) making the greater
intensities indistinguishable by colour and consequently
giving erroneous results.

Figure 15 – CMRmap colour scale saturated at greater in-
tensities

6.3 Advantages
Pipeline integration The MESA program can eas-
ily be integrated into a data pipeline, which offers an
advantage over manual processing systems, even when
many can contribute to the data analysis, for exam-
ple the BRAMS Zooniverse project (Lamy et al., 2017).
Data can be processed at a greater rate, with customis-
able settings, and there is less variation in analysis than
when completed by multiple people.

Reliability Using an automated program ensures re-
liability when analysing multiple spectrograms, and
even across multiple detection stations. This is ex-
tremely important when comparing data from multiple
sources, and cannot always be guaranteed with other
methods, especially manual analysis.

Historical data Detection stations often record data
only in spectrogram format, since this requires far less
memory storage than archiving the original radio signal.
This backlog of data can be processed using MESA to
give a large archive of detection counts and other data.

6.4 Future work

Adjustable sensitivity Most stages of the MESA
program have adjustable settings: horizontal stretch-
ing factor (which is part of determining the time res-
olution), thresholding sensitivity, erosion and dilation
strength, and CCA structural elements, TV Chambolle
denoising weight, streak convolution kernel, and the
outlier identification process. Combinations of certain
parameters could be tested to give a powerful tool to
detect certain elements of spectrograms: overdense or
underdense meteors, for example. Thresholds could be
set to only detect meteors above a given minimum in-
tensity, or beyond a minimum duration.

Acceleration calculation Provided higher resolu-
tion spectrograms are available, the acceleration of an
echo-producing meteor could be estimated by identify-
ing the points of maximum and minimum velocity, and
determining the time-separation of these points.

7 Conclusion

• Meteor head echoes may be automatically identi-
fied in spectrograms generated by forward-scatter
radio detection, as well as bounding regions which
allow calculation of further data including veloc-
ity and duration.

• Although the program does not perfectly replace
manual processing, it allows significant reduction
in the volume of data that must be manually pro-
cessed.

• The MESA program allows large volumes of spec-
trogram data to be processed at a sensitivity of
0.790, with a greater sensitivity when low-noise
data is processed: a sensitivity of 0.875 is attained
with ∼ 65% of the data below the noise threshold.

• This allows a consistent method of automatically
identifying head echoes and the region that defines
the echo.

• The program is easily extensible to allow auto-
matic calculations relating to the echoes.

• Each step of the program is adjustable, so that the
program can be customised for a given detection
setup, or targeted at certain types of echoes.
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Appendix

A Time-stamp indicator removal

Algorithm 1 Vertical timestamp-indicator line removal in pre-processing
1: img ← spectrogram after border removal
2: indices ← indices of columns with largest mean RGB pixel value in bottom pixel ⊲ Ordered from largest to

smallest
3: initialise lineLocations

4: imgNew ← deep copy of img

5: for i between 0, (length of indices)− 1 do

6: ind ← column index at index i in indices

7: imgNew ← img with column ind removed
8: lineLocations ← ind − i
9: end for
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B Broken region reconnection

Algorithm 2 Reconnection of broken echo regions
1: lbls ← array of region labels with same dimensions as spectrogram after pre-processing
2: for all region labels do

3: com ← CoM of current region
4: if com is a valid co-ordinate then

5: x ← x co-ordinate
6: y ← y co-ordinate
7: rgnVal ← label of current region
8: while region label at (x, y) = rgnVal and x < image width do

9: increment x

10: end while

11: rgnEnd ← x

12: rgnStart ← index of rgnVal in array of row y
13: column ← columns from x = rgnStart to x = rgnEnd

14: otherRgns ← list of region labels (excluding rgnVal & 0) in the columns from rgnStart to rgnEnd

15: for labelVal in otherRgns do

16: replace all elements in lbls with region label labelVal with rgnVal

17: end for

18: end if

19: end for

C Maximum intensity calculation

Algorithm 3 Maximum intensity calculation
1: for i between 1, length of list of echo centres of mass do

2: coords ← centre of mass for region with label i
3: dims ← dimensions of region with label i
4: scaleStart ← 0
5: scaleEnd ← length in pixels of colour scale in image
6: if coms is a valid co-ordinate then

7: lbls ← array of region labels with same dimensions as image
8: mask ← binary array where (x, y) in mask is 1 if (x, y) in lbls has value i, and 0 otherwise
9: img_lbl_rgb ← copy of pre-processed image (after stretching, red channel extraction, line removal)

10: replace elements of img_lbl_rgb corresponding to zeros in mask with 0
11: initialise scale_vals as empty list
12: for (row, col) in img_lbl_rgb do

13: pxlVal ← img_lbl_rgb value at (row, col)
14: if pxlVal non-zero then

15: initialise comparisons as empty list
16: for scaleImgVal in array of image values of scale do

17: comp ←
∣

∣mean (scaleImgVal− pxlVal)
∣

∣ ⊲ Note subtraction is channel-wise, then mean is
over the three channels

18: append comp to comparisons

19: end for

20: minIndex ← index of minimum value in comparisons

21: scaleVal ←
[

minIndex
length of comparisons

× (scaleStart− scaleEnd)
]

− offset

22: end if

23: end for

24: end if

25: end for


