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Abstract

The convective penetration of a buoyant plume from a uniform layer into an overlying
stably stratified layer is relevant to a wide variety of geophysical and industrial flows.
An example we focus on is the hydration of the tropical lower stratosphere (TLS) by
overshooting deep convection in the tropics. In these flows, turbulent mixing between
the plume and environment results in significant diapycnal transport of tracers carried by
the plume. Internal gravity waves are also generated within the stratified region which
can transport horizontal momentum in the vertical, thereby influencing atmospheric
winds. Despite its relevance, convective penetration of an individual buoyant plume
remains an understudied problem. This thesis serves to address the turbulent mixing,
wave generation, and tracer transport occurring in this fluid dynamical problem using
large-eddy simulations (LES) of the flow at laboratory scale.

We first examine the turbulent mixing between the plume and environment, using
a representation of the plume in buoyancy-tracer phase space to consider the mixing
in more detail than has previously been achieved. We develop a new method for
objectively partitioning plume fluid in buoyancy-tracer space into three regions, each of
which corresponds to a coherent region in physical space. This enables quantification
of different measures of turbulence and mixing within each of the three regions. Using
simulations in which the stratification strength ranges over two orders of magnitude,
we then examine the structure and source of internal waves that appear to emanate
from the top of the plume. Internal waves are generated with frequencies in a relatively
narrow band that is moderately smaller than the buoyancy frequency, despite the
broad-banded frequency spectrum of turbulence in the plume and oscillations of the
plume top. We provide evidence that the waves originate from within the turbulent
flow rather than at the turbulent/non-turbulent interface between the plume top
and the surrounding stratified fluid, and explain the frequency selection using a
linear viscous decay model. Finally, we formulate a parameterisation of moisture
which retains the essential processes involved in convective hydration of the TLS:
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condensation/sublimation of vapour/ice and sedimentation of ice. Using this model,
we explore the interaction between transport, microphysical processes and mixing
in convective hydration of a stratified layer and examine the influence of large-scale
vertical shear. We find that hydration is controlled by mixing which is modulated by
sedimentation and directly influenced by convective intensity. Vertical shear enhances
hydration by promoting small-scale mixing via internal wave breaking and shear
instabilities.

In summary, this thesis presents three results: a novel understanding of the stages
of mixing in convective penetration of a stably stratified layer, the first evidence
that internal waves are generated within the turbulent plume rather than at the
interface between the plume and environment, and a more fundamental understanding
of the role of microphysics, mixing, transport and large-scale shear in controlling
convective hydration of a stratified layer. The latter study offers insight on the physical
processes which are most important in convective hydration of the TLS and may aid
in the interpretation of more comprehensive studies and development of convective
parameterisations in climate models.
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Chapter 1

Introduction

Plumes arise from a continuous release of buoyant fluid from a localised source. This
thesis is concerned with the flow in which a plume rises through a region with constant
density ρ0 and penetrates into a stratified region where the initial density profile ρ(z)
is horizontally uniform. In stratified flows it is convenient to introduce the buoyancy
b = −gρ′/ρ0 in place of the density, where ρ′ = ρ − ρ0 is the perturbation from the
reference density ρ0 and g is the gravitational acceleration. Fluid parcels accelerate
upwards when b > 0 and downwards when b < 0, unless balanced by other forces.
We consider in particular penetration of plume into a stably stratified layer where
∂ρ/∂z < 0 or equivalently ∂b/∂z > 0. In a stably stratified region, fluid parcels
vertically perturbed from their equilibrium height will oscillate up and down with a
natural frequency N , defined by

N2 = − g

ρ0

∂ρ

∂z
= ∂b

∂z
. (1.1)

We refer to N as the buoyancy (or Brunt-Väisälä) frequency. We refer to the flow
with a buoyant plume penetrating into an overlying stratified region as convective
penetration. We focus in particular on penetration of linearly stably stratified layers
with constant buoyancy frequency N0.

The interaction between active convection and neighbouring stably stratified regions
is relevant to many geophysical flows. This work is primarily motivated by the need to
understand and quantify turbulent transport, mixing and wave generation by strong
atmospheric convection that penetrates from the bottom layer of the atmosphere into
the overlying stably stratified layer, irreversibly transporting water vapour and other
trace gases which influence the wider atmosphere. This problem can be studied by
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considering the idealised flow of convective penetration of a stably stratified layer. In
this introductory chapter we discuss this problem in detail and survey a variety of
other relevant geophysical problems. We also summarise the study of plumes and
convective penetration in fluid dynamics and introduce the physical background needed
to understand turbulent transport, mixing, and wave generation in stratified turbulent
flows. We then introduce the numerical methods that we use to study the flow and
conclude the introductory chapter with an overview of the thesis.

1.1 Geophysical relevance

Earth’s atmosphere is separated into layers, broadly determined by the vertical rate
of change of temperature. In this thesis we focus on the bottom two layers. The
lowest layer, the ‘troposphere’, is where our weather occurs. The temperature decreases
from the surface up to the ‘tropopause’ which separates the troposphere from the
‘stratosphere’ where temperatures increase with height. The troposphere is weakly
stratified, meaning the vertical density gradient is weak so vertical motions are not
inhibited by the stratification, and well mixed by convective overturning. Deep
convection, characterised by strong updrafts and rising most of the way through the
troposphere, carries fluid from the near-surface boundary layer to the upper troposphere,
with main convective outflow around 12.5 km in the tropics (Fueglistaler et al., 2009).
Transport and mixing between the upper troposphere and the overlying stably stratified
stratosphere is typically limited by the sharp increase in stratification strength at the
tropopause. On large spatial and temporal scales, the tropopause acts as a ‘rigid lid’ on
the troposphere that prevents direct exchange with the stratosphere, though upward-
propagating waves generated in the troposphere can indirectly influence the stratosphere.
On short timescales and in localised regions, direct troposphere-stratosphere exchange
can occur as a result of strong convective motions that overshoot the tropopause and
penetrate into the stably stratified stratosphere as shown in figure 1.1. This exchange
plays an important role in setting lower stratospheric composition both in the tropics
and extratropics. Owing to the weaker vertical motions in the stratosphere, its dynamics
are primarily governed by chemical and radiative processes which strongly depend on
the concentration of trace gases. It is therefore essential to understand the contribution
of overshooting convection to the control of lower stratospheric composition.

Internal gravity waves are disturbances that propagate horizontally and vertically
through a stratified fluid, driven by buoyancy forces. Deep convection impinging on the
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Fig. 1.1 Deep convection with overshooting tops over North America, 12th May 2012,
photographed from an aircraft. Photograph courtesy of NASA Earth Observatory.

base of the stratosphere can generate gravity waves that propagate horizontally as well
as vertically into the stratosphere, though the generation mechanism is debated (Fritts
and Alexander, 2003). Figure 1.2 shows an example of convectively-generated gravity
waves propagating outward from deep convection – perturbation of the vertical velocity
and temperature results in the formation of banded clouds which visualise the waves. As
internal waves propagate in the vertical direction they transport horizontal momentum,
which can significantly influence background atmospheric winds via wave–mean-flow
interaction (Eliassen and Palm, 1961). For example, convectively-generated gravity
waves contribute to the wave forcing of the stratospheric Quasi-biennial Oscillation
(QBO; Dunkerton (1997)). The QBO is the primary mode of variability in the
stratosphere, characterised by an oscillating band of strong zonal winds between
20 − 50 km in altitude confined to the tropics with a period of around 28 months
(Baldwin et al., 2001). Until recent disruptions (Osprey et al., 2016), these oscillating
winds were remarkably consistent. The QBO has been shown to exert control on
numerous other climate drivers such as the El-Niño Southern oscillation (García-Franco
et al., 2022), Madden-Julian oscillation (Son et al., 2017), and the stratospheric polar
vortex (Holton and Tan, 1980). These atmospheric processes themselves influence
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Fig. 1.2 Convectively-generated atmospheric gravity waves propagating away from the
Australian coastline, 11th November 2003, photographed by the Terra satellite. Photograph
courtesy of NASA Earth Observatory.

surface weather around the globe. Internal waves generated by convection are therefore
an important pathway for small-scales to influence large-scale atmospheric dynamics.

1.1.1 Convective hydration of the tropical lower stratosphere

An important influence of tropopause-penetrating convection on the lower stratosphere
is the mixing of tropospheric and stratospheric air that results in the irreversible vertical
transport of moisture and trace gases. This process occurs in both the tropics and
extratropics. The tropopause is lower in the extratropics (around 8 to 10 km, compared
with 14 to 18 km in the tropics), which allows deep convection to more frequently reach
the tropopause. However, convective penetration of the tropical lower stratosphere is
more influential because the transition from the weakly stratified troposphere to the
strongly stratified stratosphere is more gradual, which allows convection to penetrate
further above the tropopause, and also because composition of the tropical lower
stratosphere directly influences composition of the stratosphere as a whole.
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Fig. 1.3 Schematic diagram of convective overshooting and the tropical tropopause layer
(TTL). (a) Layers of the atmospheric structure and approximate upper and lower bounds of
the TTL and cold-point tropopause (CPT) height, alongside illustrative vertical profile of
potential temperature θ and temperature T with approximate values (in K) at the surface
and CPT. (b) Dashed line indicates latitudinal variation of the CPT height. Grey shading
indicates the TTL. Arrows indicate motion in deep convection. Main convective outflow is
in the upper troposphere. Convective overshoots penetrate into the TTL and occasionally
cross the CPT (red dashed box, indicating the region considered in figure 5.1). Thick arrow
illustrates transport of air from the TTL into the extratropical stratosphere by the Brewer-
Dobson circulation (BDC). (c) TTL structure and vertical flow outside convection. Slow
upwelling (radiative heating) above the level of zero radiative heating (LZRH) and subsidence
(radiative cooling) below the LZRH. Main convective outflow below the TTL (solid arrow).
The CPT lies above the LZRH and constrains the water vapour concentration of air parcels
that slowly rise through the TTL.

The transitional layer between the tropical troposphere and stratosphere is called
the tropical tropopause layer (TTL). The TTL is important as a gateway to the wider
stratosphere, since the Brewer-Dobson circulation (BDC) carries air from the upper
part of the TTL into the tropical stratosphere and then the extratropical stratosphere
on timescales of a few years (Butchart, 2014), thereby to a large extent setting global
stratospheric composition. The TTL is also interesting as a transition region between
two distinct dynamical regimes; it can be identified as the region where the significant
longitudinal variations in tropospheric dynamics manifest themselves in the more
zonally uniform equatorial stratosphere (Fueglistaler et al., 2009).

Definitions of the TTL structure vary. We adopt the Fueglistaler et al. (2009)
definition as shown in figure 1.3, with the lower boundary of the TTL at 14.5 km, above
the height of the major convective outflow, and the upper boundary at 18.5 km. There is
a temperature minimum at the cold-point tropopause (CPT), around 16.5 km. We refer
to the region above the CPT as the upper TTL. Within the TTL, above the level of zero
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radiative heating (LZRH) around 15 km, there is net radiative heating and corresponding
large-scale slow upwelling which forms the start of the BDC. Below the LZRH in the air
outside of convective clouds there is radiative cooling and correspondingly large-scale
subsidence. Outside of convective regions, motion in the upper TTL is quasi-horizontal
with air parcels travelling significant horizontal distances during their slow ascent, on
the timescale of several weeks. Note that we refer to the region above the TTL as the
tropical lower stratosphere (TLS); many studies instead refer to the region above the
CPT, including the upper TTL, as part of the lower stratosphere.

TTL processes play an important role in determining water vapour concentrations
in the stratosphere. The concentration of water vapour in a parcel of air is limited
by the saturation vapour concentration which, according to the Clausius-Clapeyron
relation, decreases rapidly with temperature. The very low temperatures at the tropical
CPT reduce water vapour concentrations to the order of a few parts per million
by volume (ppmv). The fact that the CPT is above the LZRH is an important
aspect of vertical water vapour transport and dehydration in the TTL; the majority
of the air that penetrates above the LZRH is likely to ascend into the stratosphere
and the same is true of air passing through the CPT, therefore temperatures at the
CPT exert significant control on stratospheric water vapour concentrations. Methane
oxidation also contributes to water vapour concentrations in the stratosphere and
plays an increasingly important role with height (Noël et al., 2018). It has been
shown that the radiative balance of the troposphere is particularly sensitive to the
concentration of water vapour in the lower stratosphere (Forster and Shine, 2002),
even though these concentrations are very small relative to those in the troposphere
itself. In addition, these concentrations are important for aspects of the chemistry of
stratospheric ozone (Brasseur and Jacob, 2017). The potential climate sensitivity to
lower stratospheric water vapour and its role in stratospheric chemistry and radiative
balance highlights the importance of understanding the vertical transport of water
vapour and the accompanying dehydration processes in the TTL.

The important role of the tropical CPT in setting stratospheric water vapour
concentrations was identified in a classic paper by Brewer (1949). Since then, there
has been much debate about the detail of the processes, in what we now recognise
as the TTL, which determine the precise concentrations. A summary of the state of
understanding about 10 years ago is given by Randel and Jensen (2013). Observations
have shown clearly how variations in the CPT, leading to variations in the ‘entry-value’
of stratospheric water vapour concentrations, are propagated into the stratosphere
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Fig. 1.4 Atmospheric tape recorder. Zonal mean water vapour anomaly in the TLS from
the SWOOSH dataset (Davis et al., 2016) plotted on isentropic levels from 400 K (around
80 hPa, 18 km) to 600 K (around 30 hPa, 24 km), averaged over 15◦ N–S and with respect to
the time mean from Jan 2006 to Jul 2024.

by transport and mixing effects of the BDC. This is illustrated in figure 1.4 which
shows the time-height variation of water vapour anomalies in the tropical stratosphere;
seasonal variation in CPT temperatures imprints on water vapour concentration and
slow upwelling by the BDC lifts the anomalies through the stratosphere over time
resulting in an ‘atmospheric tape recorder’ (Mote et al., 1996). One viewpoint (e.g.
Fueglistaler and Haynes (2005)), apparently consistent with observations such as
the ‘tape recorder’ signal, is that at first order concentrations are determined by
temperatures on a relatively large scale, provided it is taken into account that as air
parcels undergo slow ascent through the region of the CPT, they sample significant
geographical and temporal variability in temperatures. This variability is important in
reducing water vapour concentrations below what would be expected from time-mean,
e.g. monthly mean, CPT temperatures (Dessler, 1998). To improve on this first-order
picture further processes must be invoked, some operating at relatively small scales.
One is the microphysics of dehydration, e.g. particle formation and sedimentation.
Another is vertical transport through the TTL via convective overshooting, when
particularly strong thunderstorm complexes penetrate deep into the TTL on the time
scale of a few hours. This provides a secondary pathway into and through the TTL,
alongside slow radiative ascent. Rapid transport of air from the lower troposphere deep
into the TTL and, more rarely, directly into the TLS, via convective penetration allows
for injection of very short-lived species, such as bromine, which influence stratospheric
ozone concentration (Keeble et al., 2021). Without rapid convective transport these
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species would otherwise play little role in stratospheric chemistry owing to their short
lifetimes (Hosking et al., 2010; Robinson and Sherwood, 2006). Convective transport
also potentially allows the cold point constraint on water vapour concentrations to be
avoided. This can result in increases in water vapour concentrations in the main body
of the stratosphere (Jensen et al., 2007) as the additional moisture above the tropical
CPT can be transported vertically by the BDC, as illustrated by the ‘tape recorder’
effect seen in figure 1.4, and quasi-horizontally into the extratropics as illustrated in
figure 1.5.

The influence of convective hydration on moisture in the TTL and TLS remains an
active area of research. Convective overshoots penetrate into the TTL on timescales
on the order of tens of minutes and have horizontal lengthscales on the order of
kilometres. The combination of these small-scale flows with the large-scale quasi-
horizontal motions of the TTL, and the complex microphysics of moisture transport,
makes modelling of convective overshoots a significant challenge. Overshoots are too
small to be resolved by global climate models which instead represent their effects with
convective parameterisations. There is poor agreement between stratospheric water
vapour content predicted by current global climate models and observations (Keeble
et al., 2021), with a general tendency for models to underpredict relative to observations,
but large variation across models. The extent to which the lack of agreement is caused
by poor representation of, or indeed neglect of, convective penetration is not clear.

It is understood that water vapour content in the TLS is primarily governed by
temperatures at the CPT, as is evident from the tape recorder where the seasonal cycle
imprints on observations. On shorter timescales and in localised regions, convection can
exert an influence on moisture which is regarded as second order (Schiller, 2009; Wright
et al., 2011). There have been very different approaches to estimating the quantitative
contribution of convective hydration to TTL and TLS water vapor. Estimates of
the convective contribution to water vapour mass input into the TLS generally lie
in the 10 − 20% range, although some estimates are significantly lower than this;
table 1.1 summarises recent estimates. The methodology can broadly be categorised
into those using Lagrangian trajectory models and those using global storm-resolving
models. There are differences in the way that convective ‘contribution’ is quantified
which makes comparison difficult; for example, Schoeberl et al. (2018), Ueyama et al.
(2015) and Ueyama et al. (2018) compare predicted water vapour concentrations
entering the stratosphere that would be estimated with and without convection, whilst
Dauhut and Hohenegger (2022) consider the TLS water vapour budget directly from a
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Figure 3. Horizontal distribution of PV (left) and the fraction of air originating in India/China (right) (here the sum of emission from North

India, South India, and East China) at 380 K potential temperature on 20, 23, and 26 September 2012. The horizontal winds are indicated

by white arrows. The 7.2 PVU surface is shown as thick black line indicating the climatological isentropic transport barrier at 380 K in

September (Kunz et al., 2015). The the thick white lines at 180�E and at 120�W mark the position of vertical curtains shown in Figs. 5 and

6.

26

Fig. 1.5 Adapted from Vogel et al. (2016). Horizontal distribution on the 380 K surface of a
modelled artificial tracer originating at the surface in the India/China region. This tracer
is transported vertically by convection to give an effective localised source in the TTL in
the Asian Summer Monsoon, and then horizontally both within the tropics and into the
extratropical lower stratosphere. A moisture anomaly arising in the same region, through
variation in CPT temperatures, or through convective hydration, would be correspondingly
transport and therefore affect overall water vapour concentrations in the stratosphere. Snap-
shots are shown on 20, 23, and 26 September 2012. The horizontal winds are indicated by
white arrows. The 7.2 PVU surface is shown as a thick black line indicating a climatological
isentropic transport barrier at 380 K identified by Kunz et al. (2015).
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global storm-resolving model. Estimates are also calculated with varying spatial and
temporal domains which might not be expected to agree given the seasonal variation
in convective activity and TTL temperatures. Estimates are also sensitive to the
choice of cloud microphysics scheme, since the potential for an overshoot to hydrate
the TTL relies on sublimation of convectively lofted ice. Similarly, dehydration (by
overshooting and also in subsequent quasi-horizontal transit through the TTL) relies
on an appropriate representation of the growth of ice particles in a supersaturated and
very cold environment (Jensen and Pfister, 2004; Randel and Jensen, 2013).

Lagrangian models calculate trajectories using reanalysis datasets and estimate
water vapour transport using a microphysical scheme, some of which are simplified,
e.g. Schoeberl et al. (2014, 2018), and some which are more sophisticated and compu-
tationally expensive, e.g. Ueyama et al. (2018, 2015). Estimates are limited by the
accuracy and resolution of temperature and wind fields used to calculate trajectories,
as well as the need to model convective encounters which relies on the resolution and
accuracy of cloud models and datasets. It should also be noted that estimates by
Ueyama et al. (2018, 2015) are calculated slightly below the CPT rather than deep in
the TTL and are therefore difficult to compare with other studies; the contribution may
be underestimated since the lower part of the TTL tends to be close to saturation, or
overestimated since the number of convective systems that actually penetrate the CPT
is much smaller. Global storm-resolving models are capable of resolving individual
convective systems and therefore do not rely on parameterisations of convection. Other
uncertainties remain, since individual convective overshoots are not fully resolved.
Dauhut and Hohenegger (2022) present the first estimate of the vertical water vapour
mass flux into the TLS using a global storm-resolving model, with results that are
broadly in agreement with many of the trajectory-based estimates.

1.1.2 Other geophysical examples

Further examples of naturally occurring flows involving convective penetration of stable
layers arise in the atmosphere. Under certain atmospheric conditions, a layer forms
in which the usual decrease of temperature with height in the troposphere reverses,
with warm air sitting over cold air. This is called an atmospheric ‘inversion’ and
acts to trap air below the warm layer. Inversions can form on small scales, such as
in valleys, or on larger scales in the lower troposphere (such as during periods of
high atmospheric pressure) or in the mid-troposphere. Figure 1.6 shows an example
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Fig. 1.6 An atmospheric inversion visualised by a smoke plume in Lochcarron, Scotland,
30th January 2006. Photograph courtesy of Wikimedia Commons.

of the former case, where the presence of an inversion close to the surface is clearly
visualised by the trapping of a smoke plume. This figure also illustrates one of the
fundamental aspects of convective penetration: overshooting of the plume as it initially
penetrates into the inversion, mixing with its surroundings, followed by subsidence
to its neutral buoyancy height. Crucially, the neutral buoyancy height is increased
relative to that inferred from properties of the plume at penetration because mixing
with the warmer environment increases the buoyancy of mixed fluid parcels in the
plume. Over time, shallow convection rising into the inversion gradually mixes cold air
from below the inversion with warm air in it, eroding the inversion. Internal waves
are generated in the stably stratified layer and transport energy from the convective
motions into the inversion (Stull, 1976). Atmospheric inversions that form in the
mid-troposphere can act as a ‘cap’ that prevents deep convective towers from reaching
higher altitudes. When the cap is broken, thunderstorms can form. This is a key
process in the formation of severe thunderstorm outbreaks and critically depends on
turbulent transport and mixing of heat and momentum that occurs during convective
penetration of the inversion (Kurbatskii, 2001).

An atmospheric example with particular relevance in recent years is the injection
of large quantities of gas and particulates into the stratosphere by volcanic eruptions
(Carazzo et al., 2008; Textor et al., 2003) – figure 1.7 shows an example of a volcanic
plume penetrating into the stratosphere where strong horizontal winds perturb the
plume sideways. Highly explosive events such as Hunga Tonga-Hunga Ha’apai in 2022
can affect the climate on long timescales owing to the significant transport of potent
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Fig. 1.7 Plume rising from an eruption of Mount Etna in Sicily, 30th October 2002,
photographed from the International Space Station. Photograph courtesy of NASA Earth
Observatory.

greenhouses gases like water vapour (Millán et al., 2022). These short, intense eruptions
are more faithfully modelled by ‘jets’, where the vertical velocity dominates buoyancy,
and latent heat release from phase changes during ascent plays a more important role
than in convective hydration of the TTL. Nonetheless, the flow itself is closely related
to convective penetration of a stably stratified layer as the volcanic plume is limited by
the strongly stratified stratosphere. In this case, mixing plays a weak role in setting the
penetration height (which is more strongly influenced by the initial explosive forcing)
but the mixing of tracers into the environment is an important aspect of the transport;
understanding the ‘detrainment’ profile, i.e. the heights at which tracer is mixed into
the environment, is an important first step in quantifying the climate impact of these
events.

Finally, convective penetration of stably stratified layers is relevant in the open
ocean, where mixing between the deep ocean and near-surface water is hindered by the
strong vertical density gradients of the thermocline. In some regions, including several
locations in high latitude oceans and the Mediterranean Sea, intense buoyancy loss
from the ocean surface to the atmosphere results in strong, deep-reaching convection
(Herrmann et al., 2008; Marshall and Schott, 1999). The transport of surface water into
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Convective
penetration of a

stably stratified layer

Erosion of an atmospheric
temperature inversion
by shallow convection

Hydration of the
lower stratosphere
by overshooting
deep convection

Volcanic injection of gases
into the stratosphere

Generation of internal gravity
waves by deep convection

Trapping of pollution
by an atmospheric

temperature inversion

Ventilation of the abyss
by deep ocean convection

Fig. 1.8 Overview of geophysical problems which can be idealised as convective penetration
of a stably stratified layer by a buoyant plume. The colour of each circle indicates the relevant
fluid dynamical aspect. Blue: turbulent transport & mixing of passive tracers, considered
in chapter 3. Green: turbulent mixing, considered in chapter 3. Red: internal gravity wave
generation & propagation, considered in chapter 4. White: a combination of all three aspects
– transport and mixing of moist tracers, including the effect of gravity waves, considered in
chapters 5 & 6.
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the deep ocean sets and maintains the properties of the abyss (Marshall and Schott,
1999), both in terms of the general circulation and also biogeochemical cycles (Ulses
et al., 2021). In this flow, tracer transport via turbulent mixing is again a key aspect.

Note that in the examples discussed here there are a wide variety of processes which
drive convection, ranging from latent heating in the case of atmospheric convection to
buoyancy loss at the surface driving convective plumes in the ocean. The processes
which drive convection are not considered relevant to this thesis; these processes
determine the conditions of the flow as it penetrates into the stably stratified layer.
We focus solely on the flow within the stratified layer given these conditions at
penetration. It is therefore unimportant how these conditions are attained. We choose
to drive convection by imposing a buoyancy flux, which results in the formation of
an approximately axisymmetric plume that transforms into a ‘fountain’ within the
stratified layer – see the following section for a discussion of these terms in detail.
Figure 1.8 illustrates the geophysical flows discussed in this introductory chapter which
can be understood in part by studying the convective penetration of a buoyant plume
into a stably stratified layer. Each example is coloured to indicate the fluid dynamical
aspects which are most relevant to the flow in that case: blue indicates turbulent
transport & mixing of tracers, green indicates turbulent mixing alone, red indicates
the relevance of internal gravity waves, and white indicates the combined relevance of
turbulent mixing, tracer transport, and gravity wave generation.

1.2 Plumes & fountains

Here we discuss the structure and behaviour of plumes, i.e. continuous releases of
buoyant fluid, and fountains which arise when buoyant plumes rise into stratified
environments. We also summarise experimental and theoretical studies of plumes
and fountains and examine why relatively few studies address convective penetration
experimentally.

The dynamics of a turbulent plume are driven by differences in buoyancy, which
determine the acceleration felt by the plume. Entrainment, i.e. mixing of environmental
fluid surrounding the plume into the plume itself, modifies the buoyancy difference.
In a uniform environment, a buoyant plume entrains denser (less buoyant) fluid from
its surroundings, reducing its upward acceleration. The plume eventually ceases to
rise once the buoyancy difference tends towards zero. In the presence of a stably
stratified environment, where buoyancy increases with height, a plume first rises
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Intrusion

Rising plume

Plume cap
Relative buoyancy

Stratification

Fig. 1.9 Schematic diagram of the structures of a buoyant plume penetrating into a stably
stratified environment. The stratification is represented by grey shading. Colour within
the plume represents the buoyancy relative to the environment. The rising plume is more
buoyant than its surroundings and rises above its level of neutral buoyancy in the stratified
layer. Fluid becomes negatively buoyant in the plume cap and eventually overturns. Fluid
subsides towards its level of neutral buoyancy and spreads radially in the intrusion.

through less buoyant surroundings and eventually becomes negatively buoyant relative
to the environment. Excess upward momentum causes the plume to overshoot its level
of neutral buoyancy and rise to its maximum penetration height where it overturns,
producing an additional downward flow component that shrouds the upward flow.
The overturning and downward flow can be described as a fountain. Mixing between
the plume and environment as it rises and overturns reduces the buoyancy difference
towards zero at some height below the maximum penetration depth. Here, the flow
spreads outwards, forming an intrusion. In this thesis, we refer to the upward flow as
the rising plume and the overturning region as the plume cap. For convenience, we will
refer to the entire structure as a plume on the understanding that literature referring
to a ‘fountain’ is relevant to the plume dynamics in the stratified layer only. Figure 1.9
illustrates the structures in the plume, with colours indicating the buoyancy of the
plume relative to the surrounding stratified environment.

As a canonical example of a turbulent flow, significant attention has been paid
to the study of plumes in uniform environments. Plume theory is built upon the
entrainment hypothesis (Batchelor, 1954; Taylor, 1945) which states that the upward
flow in a plume is proportional to the inward radial flow from the environment. The
proportionality constant acts a simple measure of turbulent entrainment, quantifying
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in dimensionless terms the amount of environmental fluid that is mixed into the plume
as it rises. In modern studies, entrainment remains a focus of research and debate
since it characterises fundamental aspects of plume behaviour. Modern studies often
build on early experimental and theoretical work by Morton et al. (1956) (henceforth
MTT) and Priestley and Ball (1955) who developed theoretical models for plumes
based on volume and energy conservation, respectively. The canonical MTT plume
equations describe the evolution of volume, momentum and buoyancy. The self-similar
solutions that arise have been shown to accurately describe experimental observations
of plumes in numerous studies and have recently been extended to account for turbulent
modifications to self-similar profiles (Craske and van Reeuwijk, 2015). Other modern
developments have focussed on understanding the entrainment properties of plumes and
fountains in terms of bulk quantities (Hunt and Burridge, 2015; Van Reeuwijk et al.,
2016) across a wide range of regimes (Carazzo et al., 2008, 2010; Kaye and Hunt, 2006).
Most of these studies focus on a fountain in a uniform environment, where progress
has been made in understanding and modelling entrainment at the fountain top (Hunt
and Debugne, 2016; Shrinivas and Hunt, 2014) using analytic techniques beyond the
MTT plume equations (Debugne and Hunt, 2016) and experimental studies (Talluru
et al., 2022). A review of the canonical MTT plume model and current understanding
of turbulent transport and entrainment in plumes is given in chapter 2.

The MTT equations are derived under the Boussinesq approximation that density
perturbations away from the mean are small. Whilst a definite criterion on the
maximum admissible density difference to consider the Boussinesq approximation valid
is not clear, studies considering plumes which are significantly more buoyant than
their surroundings have been performed using releases of various gases into air. These
studies showed that entrainment is smaller in the non-Boussinesq regime (Ricou and
Spalding, 1961). However, the majority of experimental and numerical studies consider
Boussinesq flows owing to practical constraints. Study also tends to be limited to
plumes for which inertia dominates viscosity (high Reynolds number) and advection
dominates diffusion (high Péclet number). To our knowledge, the experiments of
Ansong and Sutherland (2010) are the only published studies which consider a buoyant
plume penetrating from a uniform region into a stably stratified layer. Their results
provide a useful benchmark for validating the numerical simulations presented in this
thesis. The introduction of a linear stratification does not (significantly) alter the
fundamental entrainment properties of a plume but does introduce a dependence on
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where the entrainment takes place; plume fluid reaching deeper into the stratified layer
can access significantly more buoyant environmental fluid.

Convective penetration of a stably stratified layer appears to be a relatively under-
studied problem experimentally because of the complexity of maintaining a linearly
stratified layer above a uniform layer. Moreover, for practical reasons, most experi-
mental and numerical studies of plumes consider closed domains with two layers of
constant buoyancy or a completely stratified environment. This setup permits more
straightforward calculation of bulk entrainment properties by considering the time
evolution of the interface between the two layers or the stratification profile, respectively.
A fundamental limitation in experimental studies of plumes is the difficulty in recording
three-dimensional data without disturbing the flow. This is necessary to understand
mixing in convective penetration given the spatial inhomogeneity of turbulence in
the flow. Numerical simulations – if properly validated – are a powerful solution to
this, allowing access to full dynamical fields and straightforward modification of the
simulation setup.

1.3 Transport, mixing and wave generation in strat-
ified turbulence

1.3.1 Stratified turbulence

In this thesis we consider the buoyancy-driven flow of a fluid satisfying the non-rotating
Navier-Stokes equations. We make the Boussinesq approximation so that changes
in the density are small compared to the mean density. In terms of buoyancy, the
equivalent assumption is that the magnitude of the acceleration due to buoyancy is
much smaller than the gravitational acceleration g. In the atmosphere, this assumption
is not appropriate in deep flows where the density can vary over several orders of
magnitude. However, when focusing on shallow regions of a flow (as in this thesis,
where we focus on the bottom of the stratified layer), the assumption remains valid.
The equations of motion for the velocity u, pressure p, buoyancy b and passive tracer
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ϕ are

∂u

∂t
+ u · ∇u = − 1

ρ0
∇p+ bk̂ + ν∇2u + F , (1.2)

∇ · u = 0, (1.3)
∂b

∂t
+ u · ∇b = κb∇2b, (1.4)

∂ϕ

∂t
+ u · ∇ϕ = κϕ∇2ϕ, (1.5)

where ν is the molecular viscosity, ρ0 is a reference density, k̂ is the unit vector in the
vertical direction z, κb is the diffusivity of buoyancy, κϕ is the diffusivity of the passive
tracer, and F represents other forcing. Note that in this formulation the pressure p
excludes the hydrostatic component ph = ρ0gz. We include a passive tracer as it is an
important part of our diagnostic approach; mixing of both the buoyancy and passive
tracer field is crucial to understanding tracer transport via turbulent mixing.

In a region with background stratification N0, perturbed fluid parcels are driven
back towards their equilibrium height by buoyancy. The competition between inertia
and buoyancy is quantified by the bulk Richardson number

Ri0 = N2
0L

2

U2 , (1.6)

where U and L are the characteristic velocity and length scales of the mean/large-scale
flow. Equivalently, the Froude number,

Fr0 = U

LN0
= Ri−1/2

0 , (1.7)

is the ratio of the buoyancy timescale N−1
0 and the advective timescale L/U . The

competition between inertial and viscous forces is quantified by the Reynolds number

Re = UL

ν
. (1.8)

When Re is large, inertia overcomes viscosity and the flow can become turbulent.
Locally, vertical shear generated by turbulence can overcome the stabilising effect of
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stratification. This is characterised by the local gradient Richardson number

Rig = ∂zb(
∂u
∂z

)2
+
(

∂v
∂z

)2 , (1.9)

where u and v are the horizontal components of velocity and ∂zb is the vertical buoyancy
gradient. Note that Rig is an equivalent formulation to Ri0 except using local measures
of the buoyancy and velocity.

In summary, in flows with Ri0 ≳ 1 and sufficiently large Re, buoyancy has a leading
order influence and the stratification acts to stabilise the flow on large scales. Locally,
turbulence overcomes this stabilising effect when Rig ≲ 1/4. In these regions, turbulent
transport and mixing can be significantly enhanced. We refer to this regime as stratified
turbulence.

1.3.2 Turbulent transport and mixing

In stably stratified flows, motion tends to follow surfaces of constant density (equiv-
alently, constant buoyancy) called isopycnals, since it is energetically preferable to
avoid doing work against buoyant forces. Horizontal and vertical motions are distin-
guished by introducing a vertical lengthscale Lv = U/N0 and corresponding velocity
scale Uv defined in terms of Lv and the timescale of horizontal motion L/U , giving
Uv = U2/(N0L) (Billant and Chomaz, 2001). The relevant Reynolds number is then
LvUv/ν = U3/(LN2

0 ν) which scales with the buoyancy Reynolds number

Reb = ε

νN2 , (1.10)

since the viscous dissipation rate of turbulent kinetic energy (TKE; Kolmogorov (1941)),
ε, scales as ε ∼ U3/L. In this ‘strongly stratified’ regime where Lv ≪ L, the turbulent
transport of density and tracers is predominantly determined by diapycnal transport
perpendicular to isopycnals which tend to be horizontal. The diapycnal flux of a
quantity ψ is then approximately w′ψ′ where w′ = w − w is the turbulent component
of the vertical velocity (similarly for ψ′) and the overbar represents an appropriate
large-scale temporal and spatial average. The diapycnal flux is a useful measure of
mixing on large temporal and spatial scales. However, the assumption that isopycnals
are flat is often invalid on shorter timescales, especially where convective instability
(or otherwise) significantly perturbs isopycnals. Moreover, a complete picture of tracer
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transport in stratified flows depends not only on mixing of the tracer itself, but also
mixing of the buoyancy of fluid parcels since this determines the height at which
tracers will settle once the flow is ‘resorted’ as isopycnals relax following transient
perturbations. For these reasons we will consider the joint effect of mixing on both
buoyancy and tracer concentration further in chapter 3.

An alternative view of turbulent mixing follows from an energetic perspective; the
two-step process of stirring and diffusion involves dissipation of kinetic energy to stir
the fluid, which sharpens density and scalar gradients, and dissipation of potential
energy as density gradients are eroded by diffusion. Of the energy feeding a turbulent
mixing ‘event’, some goes toward irreversible mixing and the remainder is dissipated
viscously. The fraction of energy actually resulting in mixing is quantified by the
mixing efficiency (Davies Wykes et al., 2015; Peltier and Caulfield, 2003). This quantity
is calculated by utilising the partitioning of potential energy in a stratified flow into
background potential energy, which is not available to do work, and available potential
energy which is stored in the buoyancy field and can be irreversibly converted into
background potential energy by turbulent mixing (Lorenz, 1955). See chapter 3 for
further discussion of mixing efficiency.

1.3.3 Internal waves

The presence of turbulence in a stably stratified fluid has been noted to generate
internal gravity waves in a wide variety of flows, including turbulent boundary layers
(Taylor and Sarkar, 2007), shear layers (Sutherland and Linden, 1998), gravity currents
(Flynn and Sutherland, 2004) and grid-generated turbulence (Linden, 1975). In the
(stratified) atmosphere and ocean, internal gravity waves are studied in part because
of their influence on the global circulation. In the ocean interior, the mixing from
breaking internal gravity waves is needed to balance upwelling in the ocean interior
and close the global ocean circulation. In the atmosphere, internal waves can affect the
circulation by transporting momentum from the region in which they are generated to
a distant region where waves can influence the flow via several mechanisms, e.g. wave
breaking or critical-layer absorption.

The detailed mechanism for wave generation by convection is not well understood.
Three main mechanisms have been identified: the mechanical oscillator effect (Pierce
and Coroniti, 1966), the obstacle effect (Clark et al., 1986) and the deep heating effect
(Pandya and Alexander, 1999). Some studies have concluded that a single mechanism
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Mechanical
oscillator effect Obstacle effect Deep heating effect

Fig. 1.10 Schematic diagram of the three main mechanisms proposed for convective genera-
tion of gravity waves.

is primarily responsible for generating the gravity waves (Clark et al., 1986) but more
recent reviews (e.g. Fritts and Alexander (2003)) conclude that all mechanisms are
important and each one can explain observations in certain contexts. The mechanisms
are illustrated in figure 1.10. In the mechanical oscillator effect, vertical oscillations
of the central updraft of a convective cell around its level of neutral buoyancy (in
the upper troposphere) excites gravity waves in the overlying stratosphere. This is
analogous to the generation of internal gravity waves by an oscillating rigid body (e.g.
Kataoka et al. (2017)). In the obstacle effect, the central updraft acts as an obstacle to
a surrounding large-scale horizontal flow across the cloud tops, generating waves in an
analogous way to flow over topography. Finally, the deep heating effect suggests that
internal waves can be understood as the linear response to a time- and space-dependent
thermal forcing (e.g. from latent heat release).

As introduced in § 1.2, Ansong and Sutherland (2010) present an experimental
study of a plume penetrating into a stably stratified layer. In the absence of a large-
scale horizontal flow, and with no latent heating in the experiment (which used salt
water to generate the buoyant plume), the mechanical oscillator effect is the remaining
mechanism that could explain the generation of internal waves by the plume. However,
their results suggest that the motion of the top of a convective plume penetrating a
stably stratified layer cannot be the source of internal waves since there is a mismatch
between the oscillation frequency of the plume top and the frequency of the waves
themselves. The mechanisms introduced above do not rely on the presence of turbulence
to explain the generation of internal waves. Recent numerical simulations of convective
plumes penetrating into a very strongly stratified layer have shown that turbulent
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Reynolds stresses within the convective region better explain the excitation of internal
waves compared with perturbation of the stratified layer interface (Lecoanet et al.,
2015). However, application of this theory to a less strongly stratified regime is difficult
since there is no scale separation between the waves and turbulence. Further discussion
of internal waves and their generation mechanism can be found in chapter 4.

1.4 Numerical methods

Turbulence is characterised by a separation between the large scales on which energy
enters the flow and the small scales at which energy is dissipated by viscosity, with a
cascade of energy through the statistically isotropic intermediate scales. The smallest
features in a turbulent flow appear close to the Kolmogorov length scale,

ηk ∼
(
ν3

ε

)1/4

, (1.11)

whilst the fastest evolving features arise on a timescale

tηk
∼
(
ν

ε

)1/2
. (1.12)

In order to fully represent turbulence with minimal numerical artefacts, simulations
must resolve these scales. A simulation with sufficient temporal and spatial resolution
to achieve this is called a direct numerical simulation (DNS). In flows with a wide range
of scales, DNS is computationally expensive and has only recently become feasible
(Alfonsi, 2011). Consequently, there are relatively few direct numerical simulations
of plumes (Craske, 2016) and, to our knowledge, none which consider convective
penetration into a stably stratified layer.

Large-eddy simulation (LES) avoids the computationally prohibitive resolution
requirement by only resolving scales larger than some prescribed lengthscale, termed
the ‘filter width’. The effect of sub-filter scales on the resolved flow are modelled using
a parameterisation scheme. In contrast to DNS, there are many examples of plumes
simulated using LES (e.g. Devenish et al. (2010); Pham et al. (2007)). The optimal
choice of filter width is debated (Verstappen, 2018) but typically chosen to match
the numerical grid spacing, in which case we refer to the parameterisation scheme
as a sub-grid-scale (SGS) model. Large-eddy simulations represent three-dimensional
turbulence with a good level of accuracy, yet can be performed with a practical level
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of computational cost. However, the turbulence characteristics can be sensitive to
the choice of SGS model. Consequently, it is important to carefully consider the
intended regime for which an SGS model has been developed. For example, the earliest
‘eddy-viscosity’ models (Smagorinsky, 1963) were designed for fully turbulent flows
and therefore perform poorly when the flow transitions between laminar and turbulent
states. Similarly, many SGS models make crude assumptions on the SGS diffusivity
κSGS for scalar fields including buoyancy. The SGS diffusivity represents turbulent
transport on the smallest scales. The simplest models invoke Reynolds’ analogy – that
SGS Prandtl number PrSGS = νSGS/κSGS = 1 – thus prescribing the SGS diffusivity as
equal to the SGS viscosity, which represents transport of momentum on the smallest
scales. The assumption is that both momentum and scalar transport largely depend
on the same turbulent eddies. In flows where the turbulent transport of tracers is
of central importance, such as in this thesis, the assumption of Reynolds’ analogy is
insufficient for a complete description of the flow.

Numerical simulations of convective penetration events have been performed using
realistic and complex meteorological models (Dauhut et al., 2015, 2018) containing many
physical processes but these are computationally expensive and challenging to interpret.
Our approach is to use numerical models of an idealised flow first to understand the
underlying processes that influence turbulent mixing and wave generation. Later, we
introduce a moist parameterisation that represents only the essential microphysical
processes involved in convective hydration of the TTL. Unlike in comprehensive
models of moisture, we neglect latent heating and represent only the vapour and solid
(ice) phases of water. In the TTL, the extremely cold temperatures mean vapour
concentrations are small so latent heating is negligible and condensed water vapour
rapidly freezes into ice that sediments downwards. Our approach sacrifices realism
in favour of computational simplicity, allowing exploration of a broader parameter
space. We choose to neglect complicating factors such as complex environmental
profiles of moisture and temperature, faithful representation of the processes driving
atmospheric convection, and detailed representations of microphysical processes such
as sedimentation. An underlying assumption is that processes below the TTL simply
act to set conditions at penetration into the TTL and need not be modelled exactly.
The use of an idealised representation of the problem means that our results are more
easily interpreted and we gain clarity on the interaction between different processes.
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1.5 Overview of results chapters

The study of a buoyant plume generated in a uniform region rising into a stably stratified
layer is linked to a multitude of geophysical, industrial and fluid dynamical problems.
However, the literature has focused on characterising bulk entrainment properties of
similar fountain-like flows and identifying the spectral properties of internal waves
generated by convective penetration. With respect to turbulent transport of tracers,
mixing characteristics, and wave generation, it is a relatively understudied problem. In
this thesis, we address the gap in the literature using large-eddy simulations. In chapter
2 we validate the capability for the chosen numerical method to faithfully represent
a plume. Following a detailed description of the numerical method, we extensively
compare an LES of a plume in a uniform environment with recent DNS results (Craske,
2016; Van Reeuwijk et al., 2016) to show that the plume dynamics and turbulent
statistics are consistent with theoretical expectations. We then validate simulations
with a stratified layer by comparing characteristic plume quantities with experimental
results from Ansong and Sutherland (2010).

In chapter 3 we introduce a method of examining turbulent transport and mixing
in convective penetration by forming a joint distribution of tracer concentration and
buoyancy with units of volume. Whilst this does not determine the diapycnal flux
explicitly, our diagnostic approach offers a more complete picture of the way in which
a plume mixes with a surrounding stratified environment compared to estimates of
diapycnal transport or detrainment profiles alone. Using the buoyancy-tracer volume
distribution, we develop a method for objectively partitioning plume fluid in buoyancy-
tracer space into three regions, each of which corresponds to a coherent region in physical
space. Specifically, we identify a ‘source’ region where undiluted plume fluid enters
the stratified layer, a ‘transport’ region where much of the transition from undiluted
to mixed fluid occurs in the plume cap, and an ‘accumulation’ region corresponding
to a radially spreading intrusion. This method enables quantification of different
measures of turbulence and mixing within each of the three regions, including potential
energy and turbulent kinetic energy dissipation rates, an activity parameter, and the
instantaneous mixing efficiency. We find that the most intense buoyancy gradients lie
in a thin layer at the cap of the penetrating plume. This provides the primary stage of
mixing between plume and environment and exhibits a mixing efficiency around 50%.
Newly generated mixtures of environmental and plume fluid join the intrusion and
experience relatively weak turbulence and buoyancy gradients. As the intrusion spreads
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radially, environmental fluid surrounding the intrusion is mixed into the intrusion
with moderate mixing efficiency. This dominates the volume of environmental fluid
entrained into the region containing plume fluid. However, the ‘strongest’ entrainment,
as measured by the specific entrainment rate, is largest in the plume cap where the
most buoyant environmental fluid is entrained.

In chapter 4 we address the generation of internal waves by convective penetration
of a stably stratified layer. First, we establish the spectral properties of the flow at
a range of heights with the squared buoyancy frequency varied over two orders of
magnitude. Consistent with laboratory studies (Ansong and Sutherland, 2010), we
identify a broad-banded frequency spectrum inside the plume which becomes narrow-
banded, close to the buoyancy frequency, above the plume. Motivated by the success
of a viscous dissipation model in explaining the spectrum of internal waves generated
by a turbulent boundary layer (Taylor and Sarkar, 2007), we apply the model to our
axisymmetric wave geometry. We find that the model captures the decay in spectral
power and selection of high frequencies when initialised from a turbulent spectrum
within the plume. We then use the Dynamic Mode Decomposition (DMD, Schmid
(2010)) to extract flow structures associated with internal wave frequencies and use ray
tracing to show that the internal wave beams apparent above the plume can be traced
to a source inside the plume. Our results are compared with the strongly stratified
regime where convective plumes do not penetrate into the stratified layer (Couston
et al., 2018); we identify a transition between this ‘scouring’ regime, which does not
exhibit frequency selection, with the ‘penetrative’ regime we consider.

In chapters 5 and 6 we focus attention on convective hydration of the TTL. In
chapter 5, we review the essential processes involved in hydration of the TTL via
convective overshoots and formulate a minimal moisture model which captures these
processes. We then explore the regimes that arise in the model of moist convection
and use a modified version of the buoyancy-tracer volume distribution in chapter 3
to understand the combined effect of the hydration mechanism on buoyancy, vapour
concentration, and ice concentration. In chapter 6 we consider a set of experiments
designed to explore the interaction between sedimentation, mixing, convective forcing,
and large-scale vertical shear in the stratified layer. For a given convective forcing,
the total hydration is determined by the competition between sedimentation, which
settles ice out of the plume, and mixing which acts to convert ice into vapour once
cold plume fluid and warm environmental fluid mix. Convective forcing increases the
total hydration by raising the maximum penetration height and carrying more vapour.
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Vertical shear also increases total hydration, by promoting small-scale turbulent mixing
via shear instabilities and internal wave breaking. Whilst the mixing efficiency is
unaffected by convective forcing, vertical shear increases the efficiency in a critical
range of shear rates and otherwise decreases efficiency since mixing becomes primarily
shear-driven rather than buoyancy-driven. Finally, we show that vertical shear plays
a weak role in driving vertical displacement of fluid parcels, questioning its role in
generating above-anvil cirrus plumes in the TTL.





Chapter 2

Large-eddy simulations of a
buoyant plume

2.1 Integral plume theory

The rise of a buoyant plume into a uniform environment is a canonical example of
a ‘self-similar’ flow, meaning that far from the plume source and ignoring molecular
effects, radial profiles of the flow variables collapse onto a single curve when the radial
coordinate r (measured from the plume centreline), vertical velocity w and buoyancy
b are normalised by characteristic scales rm, wm and bm respectively. The scale rm

represents the plume radius whilst the scales wm and bm represent half of the vertical
velocity and buoyancy on the plume centreline, respectively. These scales can be
defined in several ways, often exploiting the experimental observation that the mean
velocity and buoyancy profiles are well represented by a Gaussian curve (List, 1982;
Papanicolaou and List, 1988; Shabbir and George, 1994). An approach independent
of this observation is to define the scales in terms of integral quantities of the flow,
namely the integral volume flux Q, specific momentum flux M and buoyancy flux Fb

defined as

Q = 2
ˆ ∞

0
wr dr, M = 2

ˆ ∞

0
w2r dr, Fb = 2

ˆ ∞

0
wbr dr, (2.1)

where · represents an appropriate temporal and spatial average. Owing to the approxi-
mate axisymmetry of a plume, the spatial component is chosen to be an azimuthal
average. The temporal average is taken over a sufficiently long period to smooth
turbulent fluctuations. For a plume carrying a passive tracer with concentration ϕ we
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can also define the tracer flux Fϕ as

Fϕ = 2
ˆ ∞

0
wϕr dr. (2.2)

These integral quantities fully determine the plume dynamics and depend on the
vertical coordinate z only. In terms of these quantities the characteristic scales are

rm ≡ Q

M1/2 , wm ≡ M

Q
, bm ≡ Fb

θmQ
, ϕm ≡ Fϕ

θmQ
, (2.3)

where θm is a dimensionless profile coefficient that alters the shape of the buoyancy (and
tracer) radial profiles relative to the velocity profile. In turbulent ‘pure’ plumes, θm ∼ 1,
meaning the buoyancy, tracer and vertical velocity profiles have the same radial width.
Here, we have introduced the characteristic scale ϕm for the passive tracer concentration.
As with wm and bm, this represents half of the tracer concentration on the plume
centreline. Note that the fluxes Q,M,Fb and Fϕ are the scaled rather than actual
integral fluxes; a factor of π is neglected for convenience (Van Reeuwijk et al., 2016).
The fluxes are governed by equations which we refer to as the MTT plume equations
henceforth. These are derived by radially integrating the axisymmetric Boussinesq
equations (e.g. Craske (2016)) for conservation of mass, momentum, buoyancy and
energy, giving

dQ
dz = 2αM1/2, (2.4)

d
dz (βgM) = FbQ

θmM
, (2.5)

d
dz

(
θg

θm

Fb

)
= −N2Q, (2.6)

d
dz

(
γg
M2

Q

)
= 2Fb + δg

M5/2

Q2 . (2.7)

The (passive) tracer flux Fϕ evolves identically to Fb. Here, N2 is the buoyancy
frequency associated with the ambient fluid, which may be constant or depend on z,
and α is the entrainment coefficient. As discussed in §1.2, this coefficient arises from
the entrainment hypothesis of Taylor (1945) which relates the radial inflow to the
upward flux. In particular, α is defined by

− [ru]r=∞ = αrmwm, (2.8)
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at any given height z. In a fully developed plume, α is approximately constant with
height. An equivalent definition of the entrainment coefficient α in terms of fluxes
follows from using the definitions of rm and wm with (2.4), giving

α = 1
2M1/2

dQ
dz = 1

2rmwm

dQ
dz , (2.9)

which suggests that α can be interpreted as half of the normalised increase in volume
flux per unit rm. This supports the interpretation of α as measuring dilution of the
plume.

The remaining parameters β, θ, δ, γ in the MTT plume equations are ‘profile co-
efficients’ describing the relative shape of the self-similar profiles (Van Reeuwijk and
Craske, 2015) and are associated with the dimensionless momentum flux, buoyancy
flux, turbulence and energy flux respectively. These parameters account for, in a
radially averaged sense, the (non-dimensionalised) eddy terms neglected in deriving
the MTT plume equations. The subscripts m, f and p refer to contributions from the
mean flow, turbulence and pressure respectively. Full details on their definition are
given in Van Reeuwijk and Craske (2015). For our purposes, we simply note that in a
fully developed self-similar plume these coefficients are constant.

The MTT plume equations form an initial value problem which, given source
conditions, fully specifies the evolution of the integral quantities of a plume. Notionally,
this requires specifying source values of the fluxes Q,M and Fb. However, to simplify
the expressions it is convenient to instead prescribe the source radius r0 and values
wm(0) = 1

2w0, bm(0) = 1
2b0 which are related to values of the vertical velocity w0 and

buoyancy b0 on the plume centreline at the source. We then assume Gaussian profiles

w(z = 0, r) = 2wm(0) exp
[
−2r

2

r2
0

]
, b(z = 0, r) = 2bm(0) exp

[
−2r

2

r2
0

]
, (2.10)

yielding source fluxes

Q0 = wm(0)r2
0, M0 = wm(0)2r2

0, F0 = wm(0)bm(0)r2
0. (2.11)

For the tracer concentration, we specify a source value ϕm(0) = 1
2ϕ0 such that the

source tracer flux F (ϕ)
0 = wm(0)ϕm(0)r2

0.
The behaviour of a plume depends on the balance between buoyancy and inertia.

This is quantified by the flux balance parameter Γ introduced by Morton (1959) and



32 Large-eddy simulations of a buoyant plume

defined as
Γ = 5FbQ

2

8αβgθmM5/2 = Ri
Rip

. (2.12)

The parameter can be interpreted as a Richardson number Ri = bmrm/w
2
m normalised

by the Richardson number for a ‘pure’ plume Rip = 8αβg/5. The term ‘pure’ plume
refers to the stable equilibrium Γ = 1 where the source momentum and buoyancy fluxes
are balanced (Hunt and Kaye, 2005). A ‘forced’ plume has 0 < Γ < 1 implying an
excess of momentum at the source. A jet, which may be thought of as a zero-buoyancy
plume, has Γ = 0. As shown by Hunt and Kaye (2005), given source conditions for
a pure plume, there is an adjustment region above the source in which pure plume
conditions are reached.

2.2 Numerical scheme

2.2.1 Governing equations and SGS model

All simulations performed as part of this thesis are carried out using the non-hydrostatic
computational fluid dynamics code DIABLO originally developed by Taylor (2008) and
Bewley (2019). DIABLO evolves a discrete approximation of the Boussinesq Navier-
Stokes equations with coupled buoyancy and tracer evolution equations using a pseudo-
spectral method in the horizontal directions with periodic boundary conditions and
finite difference in the vertical direction with fixed wall boundaries. A 2/3 dealiasing rule
is applied when transforming from Fourier to physical space. The wall-bounded vertical
direction is treated with a central second-order finite-difference spatial discretisation.
A third-order mixed implicit/explicit Runge-Kutta/Crank-Nicolson scheme is used
for time-stepping. The code is parallelised using MPI which significantly increases
computational efficiency.

To aid in the examination of the flow evolution and mixing, we include a passive
tracer ϕ that satisfies the same evolution equation as buoyancy with the same diffusivity.
The scalar field ϕ(x, t) represents the (dimensionless) tracer concentration. The tracer
is passive in the sense that it has no coupling with the momentum equation, so follows
the flow and does not influence it. The tracer concentration is initially set to zero
and forced in the plume in the same way as the buoyancy. This allows us to use the
tracer to track fluid originating from the plume. In chapters 5 and 6 we introduce
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additional passive tracers to model the presence of moisture; modifications to the
governing equations are discussed in chapter 5.

We use the anisotropic minimum dissipation (AMD) scheme for the SGS model,
developed by Rozema et al. (2015) following Abkar et al. (2016) and modified by Abkar
and Moin (2017) to explicitly calculate the SGS viscosity and diffusivity (for buoyancy
as well as passive & non-passive tracers) and SGS viscosity which captures the effect of
unresolved scales. The AMD scheme is extensively validated in Vreugdenhil and Taylor
(2018). Given a characteristic lengthscale L and timescale T , the non-dimensional
governing equations for velocity u, buoyancy b and tracer ϕ including sub-grid-scale
(SGS) contributions are

∇ · û = 0, (2.13)
Dû

Dt + ∇p̂ = 1
Re∇2û + b̂k̂ − ∇ · τ + fw, (2.14)

Db̂
Dt = 1

RePr∇2b̂− ∇ · λb + fb, (2.15)

Dϕ̂
Dt = 1

RePr∇2ϕ̂− ∇ · λϕ + fϕ, (2.16)

where ·̂ indicates filtering at the resolved grid scale and k̂ is the unit vector in the
vertical direction. The terms fw, fb and fϕ represent the forcing applied to the vertical
velocity, buoyancy and passive tracer to generate the buoyant plume. The details
of this forcing are discussed in §2.2.3. The SGS stress tensor τ has components
τij = ûiuj − ûiûj , the SGS buoyancy flux is λb = ûb− ûb̂ and similarly the SGS tracer
flux is λϕ = ûϕ− ûϕ̂. The eddy-viscosity model for the deviatoric component of the
SGS stress τ d and the SGS buoyancy and tracer flux are

τ d
ij = τij − 1

3δijτkk = −2νSGSŜij, (2.17)

λb = −κ(b)
SGS∇b̂, (2.18)

λϕ = −κ(ϕ)
SGS∇ϕ̂, (2.19)

where νSGS, κ
(b)
SGS and κ

(ϕ)
SGS are the non-dimensional SGS viscosity, SGS buoyancy

diffusivity and SGS tracer diffusivity respectively. The term Ŝij is the non-dimensional
resolved shear-rate tensor

Ŝij = 1
2 (∂iûj + ∂jûi) . (2.20)
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The SGS viscosity and diffusivities are determined by the AMD scheme as described in
Vreugdenhil and Taylor (2018). Assuming the flow is not very strongly stratified, then

νSGS = (Cδ)2 max{−(∂̃kũi)(∂̃kũj)S̃ij, 0}
(∂̃lũm)(∂̃lũm)

, (2.21)

κ
(b)
SGS = (Cδ)2 max{−(∂̃kũi)(∂̃kb̂)∂̃ib̂, 0}

(∂̃lũm)(∂̃lũm)
, (2.22)

where C2 = 1/12 is a modified Poincaré constant, ∂̃iũj = (δi/δj)∂iûj, δi is the filter
width in the xi-direction and all variables are non-dimensional. Here, the normalised
non-dimensional strain-rate tensor is

S̃ij = 1
2
(
∂̃iũj + ∂̃jũi

)
. (2.23)

The SGS tracer diffusivity κ(ϕ)
SGS is calculated with b̂ replaced by ϕ̂ in (2.22). The choice

of filter widths δi depends on the grid discretisation; we use δi = 3∆xi (see Vreugdenhil
and Taylor (2018) for a full discussion on this choice). The SGS diffusivities and
viscosity may locally exceed the molecular values by several orders of magnitude in
regions with intense turbulence.

The two dimensionless parameters appearing in the non-dimensional governing
equations (2.13)–(2.16) are the Reynolds number and Prandtl number,

Re = UL

ν
, Pr = ν

κ
, (2.24)

respectively, where ν is the molecular viscosity, κ is the molecular diffusivity for both b
and ϕ and we assume that the velocity scale is U = L/T . The form of the Reynolds
number depends on the choice of characteristic lengthscale L and timescale T . As
discussed in §2.1, plumes can be characterised solely by their source radius r0 and values
of the vertical velocity and buoyancy at the source which together yield the integral
source buoyancy flux F0 = F (z = −H) with units [F0] = L4T−3. The choice of F0 and r0

for non-dimensionalising gives the plume Reynolds number Re{F0,r0} = (F0r
2
0)1/3/ν with

a velocity scale U{F0,r0} ∼ (F0/r0)1/3 and timescale T{F0,r0} ∼ r0/U . The ‘turnover time’
T{F0,r0} may be interpreted as the time for an eddy to become significantly distorted
by the plume in the absence of stratification. In a linearly stratified environment, a
more natural choice for non-dimensionalising is the integral source buoyancy flux F0

and the (constant) environmental buoyancy frequency N0. This yields a lengthscale
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L{F0,N0} = F
1/4
0 N

−3/4
0 and timescale T{F0,N0} = N−1

0 which we use henceforth. The
timescale is the buoyancy period, i.e. the time for a fluid parcel perturbed from the
initial stratification to return to its equilibrium position. The lengthscale L{F0,N0}

naturally arises from the MTT plume equations (2.4)–(2.7) in a stably stratified
environment. Following previous experimental and numerical studies (e.g Briggs
(1965); Devenish et al. (2010)), both the maximum height of the plume zmax and the
height of the intrusion zn above the base of the stratification (illustrated in figure 2.1)
scale with L{F0,N0}. With this choice of non-dimensionalisation, the Reynolds number
takes the form

Re = F
1/2
0

νN
1/2
0

. (2.25)

The tracer concentration ϕ is naturally non-dimensional and could be scaled to match
expected values for realistic tracers, e.g. values could be interpreted as being in g kg−1

under an appropriate scaling. In chapter 3, we choose to normalise ϕ by its value on the
plume centreline at the source so that its value clearly indicates dilution of the tracer
field as the plume spreads out and mixes with the tracerless stratified environment.
In chapter 5 & 6, when introducing tracers which represent water vapour and ice, we
omit any normalisation.

2.2.2 Simulation setup

Here we describe the most general aspects of the simulation setup used throughout
this thesis. Unless otherwise stated, the simulation setup described here is used. Minor
modifications are made in chapters 4, 5 and 6 to address specific requirements for the
investigation of internal waves and the introduction of a parameterisation of moist
effects.

We consider the penetration of a buoyant plume with source radius r0 and integral
source buoyancy flux F0 generated in a uniform layer of depth H into a linearly stably
stratified layer with buoyancy frequency N0. The plume carries a passive tracer with a
source tracer flux F (ϕ)

0 . The plume is generated near the bottom and at the horizontal
centre xc = (Lh/2, Lh/2,−H) of a domain of height Lz and horizontal extent Lh,
as shown in figure 2.1. Scales are chosen to be similar to those of the laboratory
experiments of Ansong and Sutherland (2010), such that r0 = 0.005 m, Lz = 0.6 m
and Lh = 0.6 m. Other than chapters 5 and 6, we use a uniform grid with N2

h × Nz

points where Nz = Nh + 1 and Nh = 512 for most simulations. The side length and
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Fig. 2.1 Setup for numerical simulations of a buoyant plume with integral source buoyancy
and tracer flux F0 and source radius r0 penetrating from a uniform layer of depth H into
a linearly stably stratified layer with constant buoyancy frequency N0. The domain has
width Lh and depth Lz. The initial buoyancy profile (right) in the stratified environment is
b(x, t0) = N2

0 z for z ≥ 0. The dashed line marks the bottom of the stratified layer at z = 0.
The forcing region of depth Lc at the bottom of the domain is indicated by the dotted line.
Internal waves radiate outwards and upwards from the top of the plume cap (blue wavy
lines) and are absorbed by the sponge layer of depth LS at the top of the domain (light grey
shading).

simulation end time t = tend is chosen such that edge effects are not present and
the radially spreading intrusion that forms does not reach the boundary during the
simulation. Other than in this chapter where we verify the numerical method, all
simulations use H = 0.2 m. Note that the non-dimensional depth of the uniform
layer varies depending on the choice of F0 and N0 since lengths are normalised by
L = F

1/4
0 N

−3/4
0 . Our focus is the stratified layer, so it is natural to choose the bottom

of the initial stratified layer to be z = 0. Then, the bottom of the domain z = −H
and top z = Lz −H vary in non-dimensional terms. We also define t = 0 as the time
at which the plume first penetrates into the stratified layer, meaning the simulation
start time t = t0 < 0 varies because of the non-dimensionalisation which depends on
N0. There is also a dependence on F0, which determines how quickly the plume will
rise through the uniform layer. In cases where we consider multiple values of F0 or
N0, it can be confusing to consider non-dimensional values because of the changing
length and time scalings and we instead use dimensional units. These cases are clearly
stated. We clearly state when using non-dimensional variables and, unless otherwise
stated, choose to non-dimensionalise with F0 and N0. In the remainder of §2.2 we will
use dimensional values for generality and convenience.
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The initial conditions are

u(x, t0) = 0, ϕ(x, t0) = 0, b(x, t0) =


0 −H ≤ z ≤ 0,

N2
0 z 0 ≤ z ≤ Lz −H,

(2.26)

with continuous plume forcing in a thin layer −H ≤ z ≲ −H + Lc at the bottom
of the domain referred to as the ‘forcing region’. The boundary conditions on the top
and bottom boundary are no-slip ∂zu = ∂zv = 0, no-penetration w = 0 and no-flux
∂zb = ∂zϕ = 0. A sponge layer of depth LS = 0.1 m is added at the top of the domain
(well above the top of the plume in each simulation), where the velocity is damped
towards zero and the buoyancy is damped towards the initial background stratification
b(x, t0) = N2

0 z to inhibit the reflection of internal gravity waves from the top boundary.
Note that in all simulations the plume has a sufficiently small volume flux that the
background stratification does not significantly vary through the simulation.

2.2.3 Plume generation method

We generate a buoyant pure plume by forcing the vertical velocity w, buoyancy b and
tracer concentration ϕ in a forcing region of depth Lc at the bottom of the domain,
as indicated in figure 2.1. We use a volumetric forcing method in which w, b and ϕ

are relaxed towards the expected structure for a pure plume according to the MTT
plume equations. As illustrated in figure 2.2, this structure is built from a Gaussian
radial profile, vertical profiles derived from the MTT equations for a pure plume, and a
forcing modulation function which limits forcing to the forcing region. In this chapter
we use ∗ to denote simulation parameters prescribed as part of the plume generation
method.

The vertical profiles are chosen to be the far-field solutions of the MTT plume
equations (2.4) – (2.7) in a uniform environment (N0 = 0) for an axisymmetric pure
plume with source radius r∗

0 and integral source buoyancy flux

F ∗
0 = 2

ˆ ∞

0
wb
∣∣∣
z=−H

rdr, (2.27)

where · denotes an azimuthal and time average. For simplicity, the source tracer flux
F

(ϕ)∗
0 defined as

F
(ϕ)∗
0 = 2

ˆ ∞

0
wϕ
∣∣∣
z=−H

rdr, (2.28)
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Fig. 2.2 Volumetric forcing method for generating a pure plume with source radius r∗
0 and

integral source buoyancy flux F ∗
0 . (a) The function fm(z) limits forcing to a layer of depth

Lc at the bottom of the domain, with fm(z) reducing to zero over a distance ∼ Lp (left). (b)
The forcing relaxes w, b and ϕ towards prescribed profiles which are built from a Gaussian
radial profile, combined with (c) vertical profiles r∗

m(z), w∗
m(z), b∗

m(z), ϕ∗
m(z) derived from the

MTT axisymmetric plume equations (right).

has the same dimensional value as the source buoyancy flux. Then, in non-dimensional
terms, F (ϕ)∗

0 = LT−2F ∗
0 , excluding the normalisation of ϕ by its source value on the

plume centreline.
In a uniform environment, the MTT plume equations admit power-law solutions

for Q,M,Fb and Fϕ which, from (2.3), yield characteristic scales with vertical profiles
given by

r∗
m(z) = 6

5α
∗(z +H − z∗

v), (2.29)

w∗
m(z) = 5

6α∗

( 9
10α

∗F ∗
0

)1/3
(z +H − z∗

v)−1/3, (2.30)

b∗
m(z) = 5F ∗

0
6α∗

( 9
10α

∗F ∗
0

)−1/3
(z +H − z∗

v)−5/3, (2.31)

ϕ∗
m(z) = 5F (ϕ)∗

0
6α∗

( 9
10α

∗F
(ϕ)∗
0

)−1/3
(z +H − z∗

v)−5/3, (2.32)

where z∗
v = − 5

6α∗ r
∗
0 is the virtual origin (which ensures a source radius r∗

0) and α∗ = 0.11
is the prescribed entrainment coefficient. Since the source tracer flux is the same as
the source buoyancy flux, and b and ϕ evolve identically in the uniform layer up to a
linear factor, the profile ϕ∗

m(z) used for the passive tracer is the same as the profile
b∗

m(z) used for the buoyancy except with F ∗
0 replaced by F (ϕ)∗

0 .
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The full structure towards which the vertical velocity, buoyancy and tracer concen-
tration are forced uses the vertical profiles (2.29)–(2.32) with Gaussian radial profiles
of width r∗

m(z). Gaussian profiles have been shown to approximate experimental data
well (List, 1982; Papanicolaou and List, 1988; Shabbir and George, 1994). Tests were
carried out with various other radial profiles at the source, all of which result in a
Gaussian profile in w, b and ϕ far from the source where the plume is fully developed.
The forcing on w, b and ϕ which is coupled to the governing equations (2.14), (2.15)
and (2.16) respectively is then

fw(x, t) = 1
τ

[
w(x, t) − 2w∗

m(z) exp
[
−2(x− xc)2 + (y − yc)2

r∗
m(z)2

] (
1 + 1

10ξ(t)
)]
fm(z),

(2.33)

fb(x, t) = 1
τ

[
b(x, t) − 2b∗

m(z) exp
[
−2(x− xc)2 + (y − yc)2

r∗
m(z)2

] (
1 + 1

10ξ(t)
)]
fm(z),

(2.34)

fϕ(x, t) = 1
τ

[
ϕ(x, t) − 2ϕ∗

m(z) exp
[
−2(x− xc)2 + (y − yc)2

r∗
m(z)2

] (
1 + 1

10ξ(t)
)]
fm(z),

(2.35)

where ξ(t) is a random number between -1 and 1, used to apply uncorrelated 10%
perturbations to the prescribed profiles at each step (note that a different random
number is calculated for each grid cell), to initiate turbulence. The factor 1/τ controls
the coupling strength with the momentum equations. The size of τ must be small
enough to control against dynamical variation and large enough to avoid numerical
instability – the choice of τ is discussed further in §2.3. The function fm(z) constrains
the forcing to a thin layer at the base of the domain. We use

fm(z) = 1
2

[
1 − tanh

(
z +H − Lc

Lp

)]
, (2.36)

where Lc is the depth of the forcing region above z = −H and Lp controls how sharply
the forcing decays above z = −H + Lc. As illustrated in figure 2.2, fm(z) ≈ 1 for
z ≲ −H + Lc and fm(z) ≈ 0 for z ≳ −H + Lc. Whilst the forcing is applied across
the entire domain, fm(z) limits the depth in which the forcing is non-zero and the
exponential factor in (2.33), (2.34) and (2.35) constrains the forcing to small radii
x2 + y2 ≲ r∗

m(z)2. An additional perturbation is applied to each velocity component
in the two grid layers above z = −H + Lc to initiate turbulence, which develops as
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the plume rises through the uniform layer. We ensure that the plume has reached
self-similarity (i.e. the turbulence and plume structure are fully developed) before
penetrating the stratified layer – see § 2.3.2 for a demonstration of this validation step.

The forcing method detailed here is non-standard. With our numerical scheme,
we found that the typical method of generating a buoyant plume by imposing a fixed
buoyancy gradient on the bottom boundary (e.g. Pham et al. (2007); Van Reeuwijk
et al. (2016)) results in ‘necking’, where the plume radius becomes very small, close
to the bottom boundary where inflow dominates the diffusive boundary buoyancy
flux. This method likely performs best with open boundary conditions (which are not
implemented in DIABLO) that allow the vertical velocity through the bottom domain
boundary to overcome the radial inflow. Pinching reduces control of the source radius
and results in excessive numerical artefacts due to the horizontal pseudo-spectral
method.

2.3 Verifying the numerical method

In this section we establish the capability for our numerical method to accurately
simulate a buoyant plume. We consider a set of simulations listed in table 2.1. First,
we consider simulations IC1, IC2 and U of a plume in a uniform environment (i.e.
without stratification, H = 0, N0 = 0) and compare results with the integral plume
theory introduced in §2.1 and the detailed analysis of a direct numerical simulation of a
pure plume presented in Van Reeuwijk et al. (2016), henceforth VR16. We verify that
the simulated plume is in good agreement with theoretical expectations and ensure
that the turbulence is well represented. A uniform environment is chosen so that
the plume extends over a deeper vertical range. The simulation end time t = tend is
long enough to obtain well-converged statistics, i.e. much longer than the turnover
time T{F0,r0} = F

−1/3
0 r

4/3
0 which is the intrinsic timescale for a plume in a uniform

environment. Note that, as opposed to the convention stated in §2.2, t = 0 is the
simulation start time in these uniform environment simulations.

We then consider simulations with the setup detailed in § 2.2.2 with a stratified layer
with buoyancy frequency N0 = 1.75 s−1 above a uniform layer of depth H = 0.15, 0.20 m
in simulations AS1 and AS2 respectively. These values, as well as the source radius r0

and integral source buoyancy flux F0, are chosen to match the laboratory experiments
presented in Ansong and Sutherland (2010), henceforth AS10. In the absence of detailed
results on turbulent statistics and plume dynamics, we verify that our simulations are
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Simn. N2
0 (s−2) H (m) r0 (m) F0 (m4s−3) N2

h ×Nz tend (s) τ

IC1 0 0 0.005 5 × 10−6 2562 × 257 100 0.1
IC2 0 0 0.005 5 × 10−6 2562 × 257 100 1.0
U 0 0 0.005 5 × 10−6 5122 × 513 100 1.0

AS1 3.0625 0.15 0.005 5 × 10−6 5122 × 513 15 1.0
AS2 3.0625 0.20 0.005 5 × 10−6 5122 × 513 15 1.0

Table 2.1 Simulation parameters for chapter 2.

consistent with the AS10 experiments by comparing characteristic heights such as the
maximum penetration height and intrusion height.

In this section, we decompose a quantity χ into its mean χ and turbulent component
χ′ using a combined time and azimuthal average. The time average is calculated from
t = tend/5 to t = tend and the azimuthal average is centred on the plume centreline,
motivated by the approximately axisymmetric nature of the plume. The numerical
method for calculating the azimuthal average is as described in Craske (2016). The
covariance of two variables χ and ψ is defined as

χ′ψ′ ≡ χψ − χψ. (2.37)

2.3.1 Plume in a uniform environment

The study by VR16 uses the integral formulation presented in §2.1 to analyse the
characteristics of a buoyant pure plume in a uniform environment. Their direct
numerical simulations achieve a Reynolds number Re = 5000 and fully resolve turbulent
scales, offering a valuable benchmark to validate our large-eddy simulations which
achieve Re = 2.5 × 106. Here, we compare integral flow statistics as well as turbulent
characteristics and profile coefficients which capture the effect of the mean flow, pressure
and turbulence on self-similar profiles. These are calculated following the methods
presented in VR16 which are detailed here where necessary. In these simulations of a
uniform environment we do not include a passive tracer.

Integral plume theory describes the evolution of a buoyant pure plume entirely in
terms of integral fluxes Q,M and Fb. Figure 2.3 shows the variation of these fluxes with
streamwise distance z. Whilst the fluxes are defined in terms of infinite radial integrals,
in the finite simulation domain we approximate the integral using the thresholding
method introduced by Craske (2016); the upper limit of the integral rε at a given
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Fig. 2.3 Variation of integral fluxes (a) Q, (b) M , and (c) F with height z in simulation U.
Fluxes defined in (2.1). Results with w-based thresholding shown in solid blue, representing
fluxes within the plume. Fluxes across the full domain shown in dashed blue. Theoretical
predictions using prescribed values α∗, z∗

v and the realised integral source buoyancy flux F0
shown in dashed red. Theory fitted to the simulation data by varying zv and α shown in solid
red. Dashed grey lines indicate the analysis region which is used to fit the theoretical curves.

height z is defined as the radius where w is a fraction ε of its value on the centreline:

w(rε, z) = εw(0, z). (2.38)

All analyses presented henceforth use ε = 0.02 following VR16. The w-based thresh-
olding method isolates the flux within the plume itself. In figure 2.3, the thresholded
fluxes are shown in solid blue whilst the full fluxes (calculated across the whole domain,
with the upper limit of the integral at r = Lh/2) are shown in dashed blue. The
surrounding environment is uniform and (initially) quiescent so thresholding does not
alter the momentum or buoyancy flux significantly. However, the volume flux is much
larger within the plume itself. As the plume develops, a weak overturning circulation
develops in the (essentially closed) domain. The thresholded flux excludes the weak
downward velocity in the environment.

The power-law solutions to the MTT plume equations (2.4)–(2.7) in a uniform
environment which yield characteristic scales as given in §2.2.3 scale with height z
according to Q ∼ z5/3,M ∼ z4/3 and Fb ∼ F0 (constant). Theoretical curves of this
form are plotted in red in figure 2.3 with coefficients derived from wm, bm and rm using
the prescribed values α∗ and z∗

v used in the forcing functions fw, fb detailed in §2.2.3.
The ‘realised’ value of the source buoyancy flux is F0 = 1.1 × 10−7 m4s−3, calculated as
the constant value attained by Fb(z) over a suitable vertical range where source effects
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Fig. 2.4 Azimuthal and time averaged radial profiles of (a) vertical velocity w(r, z) and (b)
buoyancy b(r, z) in the forcing region indicated in figure 2.1, in simulation IC1 (solid) with
τ = 0.1s and simulation IC2 (dotted) with τ = 1.0s. Prescribed profiles derived from MTT
plume theory (2.5), (2.6) shown as dashed lines. When the simulation parameter τ is smaller,
the simulated profiles are closer to the prescribed profiles.

have decayed. This range is indicated by the light grey dashed lines and referred to
as the ‘analysis region’. The agreement between theory and simulation is reasonable
but significantly improved by determining the value of zv which achieves the best fit
between the curves (red dashed lines). The optimal value of zv tends to be negative,
suggesting the plume effectively starts to evolve from a virtual source slightly above
the bottom of the domain (but within the forcing region).

Note that the realised value of F0 is around an order of magnitude smaller than
the prescribed value. The parameter τ introduced in the description of the numerical
method in §2.2.3 controls the coupling strength of the plume forcing with the momentum
equations. Small values of τ more strongly relax the vertical velocity and buoyancy
towards the prescribed analytic profiles, which ensure the generated plume has the
desired source buoyancy flux. However, the more intense forcing necessitates smaller
numerical time steps and can become a significant practical constraint. To illustrate
this effect, figure 2.4 shows radial profiles of the time and azimuthally averaged vertical
velocity and buoyancy in the forcing region in two low resolution simulations, with
τ = 0.1s and τ = 1s, which are otherwise identical. Evidently when τ = 0.1s the
vertical velocity and buoyancy realised in the simulation are closer to the prescribed
profiles. As a result, the realised integral source buoyancy flux is much larger with
F0 = 2.2 × 10−6, 3.8 × 10−7 m4 s−3 when τ = 0.1, 1s respectively. In the analysis
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Fig. 2.5 Characteristic scales (a) rm, (b)wm, and (c) bm for the plume radius, vertical
velocity and buoyancy in simulation U. Curves (2.29)–(2.31) from MTT plume theory with
prescribed values of α∗, z∗

v and the realised integral source buoyancy flux F0 shown in dashed
blue. Simulated curves in solid blue. The black dashed line indicates the top of the forcing
region. Dashed grey lines indicate the analysis region.

that follows, and when non-dimensionalising with F0, we use the realised rather than
prescribed value of F0.

The characteristic scales derived from the thresholded fluxes shown in figure 2.3
are compared with the prescribed scales (2.29)–(2.31) in figure 2.5. Note that we use
F0 in place of F ∗

0 in the prescribed scales. There is reasonable agreement between the
simulated and prescribed scales above the forcing region (indicated by a black dashed
line). The agreement is best for the buoyancy scale bm. The vertical velocity scale
wm is smaller than expected. However, the volume flux within the plume shown in
figure 2.3 remains close to the theoretical prediction since the characteristic plume
radius rm is wider than the theoretical radius.

Figure 2.6 shows the time and azimuthally averaged vertical velocity w and buoyancy
b. The buoyant plume appears as a region of strong vertical velocity and buoyancy
localised to small radii. The linear increase in plume radius with height as predicted
by the MTT plume equations is evident. We compare the simulated plume radius
(solid black, as shown in figure 2.5) with the threshold radius rε (solid blue) and three
theoretical predictions based on different estimates of the entrainment coefficient. The
plume radius r∗

m(z) defined by (2.29) is shown with the prescribed value α∗ = 0.11
(black dashed), the VR16 DNS estimate αVR16 = 0.105 (black dot-dashed) and the
‘linear fit’ estimate αl = 0.113 calculated by varying α∗ and z∗

v in (2.29) to find the
optimal fit between r∗

m(z) and the simulated radius. Figure 2.6 shows that although



2.3 Verifying the numerical method 45

Fig. 2.6 Azimuthal and time averaged vertical velocity (a) w(r, z) and (b) buoyancy b(r, z)
in simulation U. Threshold radius rε used to calculate integral plume fluxes shown in solid
blue. In each panel, various estimates of the plume radius are overlaid in black: simulated
characteristic plume radius rm (solid), prescribed radius r∗

m defined in (2.4) (dashed), linear
fit of r∗

m with rm by varying α and zv (dotted), prescribed radius r∗
m with VR16 estimate

α = 0.105 (dash-dotted).

rm calculated from the simulation is larger than theoretical estimates of the plume
radius, this is accounted for by the plume source effectively lying slightly above the
bottom of the domain. Thus the various radii are not dissimilar in the analysis region.

The weak overturning circulation which reduces the full domain volume flux com-
pared with the volume flux within the plume can be seen as a small downwards vertical
velocity surrounding the plume in the left panel of figure 2.6. In the right panel, we find
a weak stratification forming at the top of the domain, owing to the accumulation of
buoyant fluid as the plume impinges on the closed top boundary and spreads laterally.
This is unavoidable in a uniform environment since the plume rise is not limited by the
environment. VR16 use a domain with open boundaries to avoid this issue. However,
open boundaries are notoriously difficult to implement (e.g. Dhamankar et al. (2018))
so we do not use this method in our simulations. Moreover, the accumulation of fluid
at the top boundary does not appear when stratification is introduced since the plume
does not reach more than halfway through the domain and buoyant fluid instead
accumulates in an intrusion at a lower height. This instead introduces a limitation
on the maximum integration time of the stratified simulations since the intrusion can
reach the side boundaries.

Perhaps the most fundamental check that the simulation is accurately described by
integral plume theory is the self-similarity of the vertical velocity and buoyancy profiles.
Figure 2.7 shows radial profiles of w, b and radial momentum and buoyancy fluxes
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Fig. 2.7 Self-similar radial profiles of (a) w and b, (b) radial momentum and buoyancy
fluxes u′w′ and u′b′, (c) mean radial velocity u, and (d) normalised mean radial specific
volume flux ru in simulation U. Profiles are shown in the analysis region 0.2 m ≤ z ≤ 0.4 m
indicated by dashed grey lines in figures 2.3, 2.5 and 2.6. Four estimates of the entrainment
coefficient shown bottom right: linear fit of r∗

m to rm gives αl (dotted), VR16 estimate αVR16
(dot-dashed), prescribed value α∗ (dashed) and value derived from fluxes (dashed blue) as
shown in figure 2.8.

u′w′ and u′b′ over a range of streamwise heights z in the analysis region, normalised
by the relevant characteristics scales. When normalised, the profiles collapse to a
single curve. In the case of w and b this curve closely matches the experimentally-
observed Gaussian profile with radius rm, indicated by the black curve. Figure 2.7
also shows the normalised radial velocity and specific volume flux. Whilst they are
approximately self-similar, there is more spread in u than the w and b profiles, likely
due to the weak overturning circulation which disrupts the radial flow into the plume.
Nonetheless, the radial specific volume flux tends towards a constant value as r/rm

increases which verifies the entrainment hypothesis and demonstrates that plume
entrainment is behaving broadly as expected. According to (2.8), this constant value is
−α where α is the entrainment coefficient. As discussed earlier, the value of α can be
estimated by a linear fit of the prescribed radius r∗

m with the simulated plume radius
rm, giving αl = 0.113. The value can also be estimated from the identity (2.9) which
gives α as a function of z. The mean αp of this curve within the analysis region gives
another estimate for the entrainment coefficient. From figure 2.7(d) we see that the
large-radius behaviour of the radial specific volume flux is best represented by αp.
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Fig. 2.8 Variation of (a) entrainment coefficient α = (2M1/2)−1dzQ and (b) flux balance
parameter Γ defined in (2.12) with streamwise distance z in simulation U. Four estimates of
the entrainment coefficient shown as in figure 2.7.

Figure 2.8 shows the vertical variation of α with streamwise distance z and the mean
αp which is compared with the linear fit αl, VR16 value αVR16, and prescribed value
α∗. Whilst there is significant variation in α(z), the variation is weaker in the analysis
region. The mean αp is larger than other estimates of the entrainment coefficient but
remains within the range 0.1 < α < 0.16 found in the literature (Carazzo et al., 2006).
Figure 2.8 also shows the streamwise variation of the flux balance parameter Γ defined
in (2.12). As discussed in §2.1, Γ indicates the balance between gravitational and
inertial forcing and a ‘pure’ plume has Γ = 1. There is some adjustment below the
analysis region where Γ < 1, indicating an excess of momentum relative to buoyancy but
the plume reaches a ‘pure’ plume state where momentum and buoyancy are balanced
far above the source.

As briefly discussed in §2.1, profile coefficients are a modern addendum to the
MTT plume equations which, in a radially averaged sense, account for the (non-
dimensionalised) eddy terms neglected in the equations and act to modify the shape
of self-similar profiles for each variable (Craske and van Reeuwijk, 2015). In a fully
developed self-similar plume the coefficients are constant. The vertical variation of the
profile coefficients are shown in figure 2.9. The mean flow and turbulence contributions
are roughly constant in the analysis region, and match the values found in VR16 well
(not shown). The pressure contribution varies with height, likely due to the weak
overturning circulation discussed earlier, which reduces pressure at the bottom of the
domain and increases pressure at the top.
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Fig. 2.9 Variation of the mean profile coefficients for (a) mean flow, (b) turbulence, and (c)
pressure contributions with streamwise distance z in simulation U. Full definitions given in
VR16; coefficients are constant in a pure plume.

Fig. 2.10 Decomposition of the entrainment coefficient according to (2.39). Variation of
contributions from (a) turbulence production αprod, (b) mean buoyancy αRi and (c) changes
in profile shape αshape with streamwise distance z in simulation U. Sum of contributions∑

αχ shown (purple dot-dashed) along with flux-based calculation of α (solid blue), the mean
αp, and the estimate from a linear fit αl (dotted black).
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We now investigate the turbulence characteristics of the simulated plume. This
can be assessed in two ways. Firstly, entrainment acts as a measure of dilution of the
plume by turbulent mixing between the plume and environment. The entrainment
coefficient can be decomposed as shown in Van Reeuwijk and Craske (2015), using the
z-dependent definition of α given by (2.9) and the MTT plume equations (2.4)–(2.7)
to give

α = − δg

2γg︸ ︷︷ ︸
αprod

+
(

1
βg

− θm

γg

)
Ri︸ ︷︷ ︸

αRi

+ d

dζ

[
log

γ1/2
g

βg

]
︸ ︷︷ ︸

αshape

. (2.39)

This decomposition quantifies the contribution to entrainment of turbulence production
αprod, mean buoyancy αRi and changes in profile shape αshape. The streamwise variation
of these contributions, the direct calculation α(z) shown in figure 2.8 and the estimates
αl and αp are shown in figure 2.10. The sum of the contributions ∑αχ = αprod + αRi +
αshape has similar behaviour to α(z) and is in good agreement with the estimate αl using
rm. This is consistent with DNS results in VR16 and demonstrates that entrainment
in the simulated plume is consistent with predictions from MTT plume theory. VR16
note that the term αshape is non-zero when radial profiles of first and second order
plume statistics are not self-similar. This primarily occurs above the analysis region,
where the plume feels the effect of the top boundary, and at the bottom of the domain
where the flow transitions to turbulence and mean profiles develop their self-similar
shapes. This domain is approximately 10 source radii deep or 5 cm in dimensional
units. Similar transition layers are apparent for the mean buoyancy and turbulence
production contributions. In particular, these contributions vary over a deeper layer
up to around z ≈ 0.1 m. This is consistent with the buoyancy flux Fb in figure 2.3, flux
balance parameter Γ and z-dependent entrainment coefficient in figure 2.8 which do
not settle until above z ≈ 0.1 m.

The turbulent characteristics of the plume can also be assessed by considering the
invariants of the deviatoric component of the Reynolds stress tensor, known as the
anistropy tensor b with components defined by

bij =
u′

iu
′
j

u′
iu

′
i

− 1
3δij. (2.40)

The first invariant Tr(b) is zero and following Lumley and Newman (1977), the second
and third invariants η, ξ are defined as 6η2 = bijbji = Tr(b2) and 6ξ3 = bijbjkbki =
Tr(b3). These variables describe the physical state of turbulence in a 2D map known as
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Fig. 2.11 Invariants of the anisotropy tensor (2.40) in simulation U. (a) Plotted in (ξ, η)
space with the Lumley triangle shown in black with dependence of (b) ξ, (c) η on r/rm

(right).

the ‘Lumley triangle’. The second invariant η > 0 identifies the degree of anistropy in the
flow field, where large η indicates strong anisotropy. The third invariant ξ determines
if the turbulence state is one-component, two-component, or axisymmetric. In the
plume, we expect weak anistropy (small η) and axisymmetric turbulence, indicated by
ξ = ±η. This is indeed found in the results as shown in figure 2.11 and there is close
agreement with the DNS results in VR16.

2.3.2 Plume in a stratified environment

We now consider simulations AS1 and AS2 which are each run four times to produce
a larger set of results which are statistically independent owing to the uncorrelated
perturbations applied to the forcing profiles and velocity components to initiate
turbulence. The simulations use parameters matching the experiments reported by
AS10. We vary the depth of the uniform layer, choosing H = 0.15, 0.2 m. Note that
AS10 consider H = 0, 0.05, 0.1, 0.15 m but we are restricted to deeper uniform layers so
that the simulated plume can fully develop. Note also that whilst AS10 use a source
radius r0 = 0.2 cm, we instead use r0 = 0.5 cm so that the forcing profile is better
resolved. Thus to attain a similar integral source buoyancy flux, the prescribed vertical
velocity and buoyancy on the centreline are smaller than in the AS10 experiments.
The mean simulated integral source buoyancy flux is F0 = 4 × 10−7 m4s−3 compared
with the mean value 5.6 × 10−7 m4s−3 inferred from AS10.

In each simulation, we verify that the plume has reached a quasi-steady state before
penetrating the stratified layer by repeating some of the analyses performed on the
unstratified plume in the previous section. In particular, we ensure that profiles are
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Fig. 2.12 As in figure 2.7 but calculated from simulation AS2 with analysis region
−0.1 m ≤ z ≤ − H/10 m.

self-similar, profile coefficients have converged to constant values, and the integral fluxes
match MTT theoretical predictions. Here we provide examples of these verification
steps on a single run of simulation AS2 with H = 0.2 m, since this value is used in
all simulations in the remainder of this thesis. The temporal average is taken over
5 s ≤ t ≤ 15 s with the plume first penetrating the stratified layer at t = 0. The
analysis region is −H/2 ≤ z ≤ − H/10, i.e. the top half of the uniform layer,
excluding a shallow region at the top of the uniform layer where the interface with
the stratified layer is perturbed downwards by the intrusion. The verification process
shown here is repeated in all simulations in this thesis but not reported.

Figure 2.12 shows the plume has reached a self-similar state in the analysis region,
before penetrating into the stratified layer. We also see that the entrainment hypothesis
holds for these profiles, with the radial specific volume flux converging to a constant
value far from the plume. Figure 2.13 shows that the integral fluxes match MTT
plume theory in the analysis region. There is a slightly larger discrepancy between the
theoretical and simulated curves compared with the unstratified plume in the previous
section, but the fitted theoretical curves closely match the simulation data, again
suggesting the effective virtual source of the plume lies slightly above the bottom of
the simulation domain. Note also that the integral buoyancy flux Fb is approximately
constant as expected for a pure plume. Finally, figure 2.14 shows that the profile
coefficients are approximately constant in the analysis region, suggesting that turbulence
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Fig. 2.13 As in figure 2.3 but calculated from simulation AS2. Grey dashed lines indicate
the forcing region. The solid black line indicates the bottom of the initial stratified layer.
The fluxes match theory before the plume penetrates the stratified layer.

Fig. 2.14 As in figure 2.9 but calculated from simulation AS2. Grey dashed lines indicate
the forcing region. The solid black line indicates the bottom of the initial stratified layer.
The profile coefficients become constant before the plume penetrates the stratified layer.
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Fig. 2.15 Schematic of (a) characteristic heights for a buoyant plume centred at xc penetrating
into a stably stratified layer and (b) calculation method using the horizontally averaged tracer
concentration. The maximum penetration height zmax is slightly above the quasi-steady
state height zss. The intrusion forms at the equilibrium height zn. The interface height zi is
slightly below the bottom of the initial stratified layer z = 0 to account for perturbation of
the interface by the plume. The heights zmax and zn are calculated from the horizontal mean
of the tracer concentration ϕ̃ and a threshold ϕthresh: zmax is the largest height at which
ϕ̃ > ϕthresh and zn is the height where ϕ̃ is maximised. Note this requires sufficient tracer to
have accumulated in the intrusion.

in the plume has fully developed. Together these results demonstrate that a uniform
layer of depth H = 0.2 m is sufficient for the plume to reach a steady state before
penetrating into the stratified layer. We find that Γ ≈ 0.8 at penetration in the
stratified simulations (not shown), suggesting the plume is slightly ‘forced’, with a
small excess of inertia compared to buoyancy at penetration.

We now verify that our simulations are consistent with experimental results by
comparing characteristic flow quantities with those reported in AS10. As described in
section 1.2 and illustrated schematically in figure 2.15, a buoyant plume penetrating into
a stably stratified layer rises to a maximum penetration height zmax before overturning
and forming a spreading intrusion at the equilibrium height zn. The maximum height of
the plume then oscillates around a lower ‘quasi-steady state’ height zss. These heights
are calculated from simulation data using the horizontal mean tracer concentration
ϕ̃(z, t) and a threshold ϕthresh. At any time t, the top of the plume is defined as the
largest height at which ϕ̃ exceeds ϕthresh. The maximum height zmax is the largest
of these heights and tmax is the time when zmax is reached. The quasi-steady state
height zss is the mean height of the top of the plume from tmax onwards. Since tracer
accumulates in the intrusion at the equilibrium height, we calculate zn as the height at
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Fig. 2.16 Estimated maximum penetration height zmax, quasi-steady state height zss and
equilibrium height zn (left) and comparison of the ratio zss/zmax with the interfacial Froude
number Fri defined by (2.41) in four runs of simulation AS1 and AS2 each.

which ⟨ϕ⟩h is maximised. The calculation of zn is only valid sufficiently long after tmax

such that tracer has accumulated in the intrusion. In calculating the heights zmax, zss

there is some sensitivity to the tracer threshold ϕthresh. We ensure that ϕthresh is large
enough to avoid any numerical noise in the horizontal mean ϕ̃. Unless otherwise stated,
we use ϕthresh = 10−3.

Following AS10 we also compute the interfacial Froude number Fri defined by

Fri = wm(zi)√
bm(zi)rm(zi)

, (2.41)

where zi = − 1
10H is the approximate height of the interface between the uniform and

stratified layer. This value is slightly below the initial interface height z = 0 to account
for perturbation of the interface as the plume rises and spreads. From MTT plume
theory we expect wm(zi) ∼ H−1/3, bm(zi) ∼ H−5/3 and rm(zi) ∼ H hence Fri ∼ 1, i.e.
Fri is roughly constant across a range of values of H. The interfacial Froude number is
compared with the ratio of the quasi-steady state and maximum heights. For the case
of a fountain in a linearly stratified environment (i.e. H = 0, N2

0 > 0), Bloomfield and
Kerr (1998) found an average zss/zmax ≈ 0.93.

Figure 2.16 shows a summary of the results from the 8 simulations (4 runs each of
AS1 and AS2). Our results can be compared with figures 6 and 7 in AS10. Figure 2.16(a)
shows the characteristic heights zmax, zss and zn. As noted in section 2.2, these heights
scale with the length scale L = F

1/4
0 N

−3/4
0 . In particular, the experimental study

of Briggs (1965) found that zmax ≈ 3.8L and the LES study (in a fully stratified
environment) of Devenish et al. (2010) found zmax ≈ 1.36α−1/2L. The simulation
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results show good agreement with these estimates. It is difficult to compare our
simulated values of zn with AS10 results since in the laboratory it is difficult to
distinguish between the interface and the intrusion. AS10 therefore only report zn for
experiments with H ≤ 10 cm, finding zn ≈ 1 cm in the H = 10 cm case. These values
are similar to our simulation results despite the deeper uniform layer, though we note
that the transition from the uniform layer to a fixed stratification above is likely not as
sharp (i.e. the local buoyancy gradient increases more gradually immediately above the
interface) in the AS10 experiments as in our simulations, which may weakly affect the
height of the intrusion. The simulated values of zss/zmax shown in figure 2.16(b) are
close to the empirical estimate by Bloomfield and Kerr (1998). However, we sample a
much smaller range of interfacial Froude numbers compared with AS10. In particular,
the Froude numbers we achieve are much smaller than in the AS10 experiments since
we use a larger source radius r0 and to attain a similar integral source buoyancy flux F0

we prescribe a smaller vertical velocity and buoyancy at the source. Similarly, it was
shown in § 2.3.1 that the realised forcing profiles when τ = 1s do not exactly match
the prescribed profiles, introducing a small imbalance in the forcing which results in
a slightly forced plume state with Γ < 1. Nonetheless, we find Fri is approximately
constant when H is varied between the two sets of simulations, as expected from MTT
plume theory.

2.3.3 Gibbs ringing

In the horizontal pseudo-spectral numerical scheme used by DIABLO, the spectral cutoff
filter introduces unphysical oscillations in the scalar fields throughout a horizontal
level in response to sharp gradients on that level. This is known as Gibbs ringing (e.g.
DeBonis (2019)) and is qualitatively similar to the oscillations that arise in the Fourier
series representation of a finite step function using a finite number of modes. There are
two regions where Gibbs ringing arises in the flow we consider: in the uniform layer,
where b and ϕ are large on the plume centreline (and confined to small radii) and zero
in the surrounding environment. Also, above the intrusion, the plume width is small
compared to the domain size and the plume buoyancy is significantly smaller than
the surrounding environment. This causes steep gradients in the buoyancy field in
particular. These oscillations only occur along vertical slices that intersect the plume
centreline at the middle of the domain and therefore does not have a significant impact
on the plume on average (see figure 2.12) nor on the simulated buoyancy and tracer
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fluxes (see figure 2.13). Note also that the numerical scheme conserves scalar fields
in the absence of sources and sinks. Gibbs ringing primarily occurs on vertical slices
crossing the plume centreline since the largest values in the buoyancy and vertical
velocity fields occurs here. Figures in this thesis primarily show these vertical slices
through the centreline, so Gibbs ringing artefacts are particularly apparent. The
influence of Gibbs ringing can be reduced by decreasing the source buoyancy flux F0

and tracer flux F (ϕ)
0 , which acts to decrease the gradient in the scalar fields between

the plume and environment. In analyses presented in the remainder of this thesis, we
ensure that the results are not qualitatively influenced by the presence of Gibbs ringing.
Where necessary, adjustments to the analyses to handle these numerical artefacts are
introduced and described.



Chapter 3

Diagnosing tracer transport in
convective penetration of a stably
stratified layer

3.1 Introduction

Progress towards understanding the contribution of convective penetration to tracer
transport in geophysical settings can be made by considering an idealised representation
of the problem in which a region of strong stable stratification is penetrated by a
turbulent buoyant plume generated in a region with weak or zero stratification. The
objective of the study reported in this chapter is to diagnose the irreversible diapycnal
tracer transport that results from turbulent mixing between plume fluid carrying a
passive tracer and the surrounding environmental fluid in the stratified layer where no
tracer is present. We aim to provide a quantitative description of the mixing involved in
this diapycnal transport. Such descriptions are essential in forming parameterisations
of convective penetration.

H r0 N2
h ×Nz tend ∆t τ L Lc Lp Re Pr

7.97 0.20 5122 × 513 15 0.25 1.00 23.9 0.80 0.40 6.29 × 106 0.70
Table 3.1 Non-dimensional parameters for the simulation with N0 = 1 s−1 and F0 = 3.96 ×
10−7 m4s−3 discussed in chapter 3.
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We consider a single simulation of the setup described in chapter 2 in which a
buoyant plume with source radius r0 and source integral buoyancy flux F0 generated
in a uniform layer of depth H penetrates into a stably stratified layer with buoyancy
frequency N0. The source tracer flux F (ϕ)

0 has the same (dimensional) value as F0. In
this chapter, we non-dimensionalise using F0 and N0 such that the source buoyancy
flux and stratification strength are both unity. We use simulation parameters which
are similar to the experimental setup used by Ansong and Sutherland (2010) except
for the source buoyancy flux, which is weaker here to reduce the influence of Gibbs
ringing. The parameters are given in table 3.1 and non-dimensionalised by N0 = 1 s−1

and F0 = 3.96 × 10−7 m4s−3. In the remainder of this chapter, all values stated are
non-dimensionalised with respect to this choice of F0 and N0.

Throughout the flow evolution, plume fluid is distinguished from environmental
fluid by the presence of non-zero tracer concentration. Crucially, both the tracer
concentration ϕ and buoyancy b are subjected to turbulent mixing, resulting in the
entrainment of environmental fluid into the plume and modification of the relationship
between buoyancy and tracer within the plume. Analysis of this relationship has
previously been used to understand tracer transport and mixing. Plumb (2007)
introduced a tracer-tracer probability density function to study rapid isentropic mixing
in the stratosphere. Penney et al. (2020) utilised this method to study diapycnal
mixing of passive tracers by Kelvin-Helmholtz billows arising in a stratified shear flow.
Using buoyancy as one of the tracers, the redistribution of fluid in buoyancy-tracer
space was used to interpret the mixing process.

In this chapter we introduce a buoyancy-tracer volume distribution which is a mod-
ified formulation of the tracer-tracer and buoyancy-tracer joint distributions presented
in Plumb (2007) and Penney et al. (2020). In our formulation we consider the flow of
fluid volume through a buoyancy-tracer phase space to understand the effect of mixing
on the transport of a passive tracer in a buoyant plume penetrating a linearly stably
stratified layer. In § 3.2 we discuss the evolution of the flow and tracer concentration.
We then introduce our formulation of the buoyancy-tracer ‘volume distribution’ in § 3.3.
We use this novel formulation of the method to show that the flow can be partitioned
into three regions of buoyancy-tracer space: the ‘source’ region where plume fluid
enters the stratified layer, a ‘transport’ region through which volume flows during
initial mixing between the plume and environment, and an ‘accumulation’ region where
mixed fluid settles and homogenises. Each of these regions of buoyancy-tracer space
correspond to coherent regions of physical space that identify the essential structures
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Fig. 3.1 Three stages of the flow evolution, shown as x-z cross-sections of the tracer
concentration ϕ shown where ϕ exceeds 1% of its value on the plume centreline at the source
z = −H. Buoyancy contours are shown otherwise. Cross-sections are taken at the plume
centreline at non-dimensional times t = 1, 6.75, 14. From left to right, the panels show the
plume during initial penetration, reaching maximum penetration height, and spreading of
the intrusion.

of the flow, namely the rising plume, plume cap, and radially-spreading intrusion,
respectively. These structures are indicated in figure 1.9. In § 3.4 we analyse diagnostics
of the mixing process in each of these regions.

3.2 Flow & tracer structure

The flow evolution is presented in three vertical cross-sections through the plume
centreline in figure 3.1. We identify the plume as regions with tracer concentration
ϕ ≥ ϕmin ≡ 10−2, i.e. we threshold the tracer field at 1% of its value on the plume
centreline at the source. In the tracer-less environment surrounding the plume we show
contours of the buoyancy field. The bottom of the stratified layer, above which the
buoyancy of the environment becomes non-zero, is indicated by the lowest buoyancy
contour.

Figure 3.1(a) shows initial penetration of the stratified layer by the plume cap.
As the plume rises through the stratified layer, its upward acceleration decreases as
the relative buoyancy between the plume and the surrounding environment decreases.
Once the environmental buoyancy exceeds that of the plume, the plume decelerates.
Eventually, the rising fluid reverses direction, or ‘overturns’, and begins to subside
from the maximum penetration height zmax (figure 3.1(b)). As plume fluid subsides,
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Fig. 3.2 Timeseries of the tracer concentration ϕ(Lh/2, Lh/2, z, t) in the z − t plane at the
centreline of the computational domain x = y = Lh/2. The green dashed contour denotes
the plume threshold ϕ = ϕmin, i.e. where ϕ is 1% of its value on the plume centreline. The
maximum penetration height zmax and the quasi-steady state height zss are marked.

its buoyancy relative to the surrounding environment increases until reaching the level
of neutral buoyancy zn where the plume fluid forms a radially-spreading intrusion – see
figure 3.1(c). The dynamics observed in the simulation agree qualitatively with studies
of similar set-ups in the literature, for example the experiments detailed in Ansong
and Sutherland (2010) with an identical setup and similar physical parameters.

The evolution of the maximum height of the plume cap during penetration and the
subsequent quasi-steady state is visualised as a time-series of tracer concentration on the
plume centreline in figure 3.2. As has been noted in the literature, the maximum height
of the plume tends to oscillate around a quasi-steady state height zss (Turner, 1966) but,
to our knowledge, the mechanism setting the frequency of this oscillation (often referred
to as ‘plume bobbing’) is not well understood (e.g. Ansong and Sutherland (2010)). In
the simulation considered here, the quasi-steady state height zss is close to the maximum
penetration height zmax and the oscillation is weak. For convenience, we will use zmax

to refer to the maximum height of the plume. The maximum penetration height zmax

determines the maximum height at which plume fluid can mix with the environment
(Ansong et al., 2008), meaning the initial buoyancy at the maximum penetration height,
b = zmax, represents a plausible constraint on the maximum buoyancy accessible for
mixing with the plume. However, this constraint can occasionally be exceeded when
plume fluid subsiding from the plume cap pulls very buoyant environmental fluid
downwards (see figure 3.1(b) to the left of the plume cap). Here we find zmax = 3.94
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Fig. 3.3 Schematic illustration of the pre-penetration region defined in §3.2 for diagnostic
purposes, shown in red. The (azimuthally averaged) Gaussian profiles of w, b and ϕ in the
plume rising through the uniform layer are illustrated in blue.

which agrees with experimental estimates of the maximum penetration height in the
literature, e.g. zmax ≈ 3.8 for a plume with a round source (List, 1982).

Internal gravity waves across a range of frequencies are generated during the
penetration process. These waves are visible as small amplitude, long wavelength
undulations in the buoyancy contours above z ≈ 4 in figure 3.1(c). Whilst these waves
may play some role in generating turbulence and hence mixing, we note from AS10
that the waves extract O(1 − 10%) of the upward energy flux in the plume and in
the absence of a mean flow the waves do not break, so this influence is expected to
be small. We do not consider the particular contribution of these waves to mixing
here; the generation of internal waves is considered in chapter 4 and their influence on
mixing in the presence of vertical shear is considered in chapter 6.

In the uniform layer, the buoyancy and tracer evolve identically up to a linear factor,
i.e. the undiluted plume fluid entering the stratified layer has a linear relationship
between b and ϕ at each point. This follows from the self-similarity of the buoyancy and
tracer concentration profiles in the steady state plume that penetrates the stratified
layer (see chapter 2, figure 2.12). The radial profiles for b and ϕ are both Gaussian with
the same width but different amplitudes, hence b ∝ ϕ. After penetrating the stratified
layer, plume fluid with non-zero buoyancy and tracer concentration mixes with tracer-
less environmental fluid and hence the buoyancy and tracer evolve differently. This
effect can be quantified using a tracer probability density function (PDF) in buoyancy
coordinates ϕ̃(b; t). The PDF is calculated within the stratified layer only. The value
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Fig. 3.4 Probability density function ϕ̃(b, t) of tracer as a function of buoyancy b in the
stratified layer at fixed time intervals post-penetration shown as coloured lines. The black
dashed line shows the time-averaged pre-penetration PDF ϕ̃0(b), calculated with V chosen as
the pre-penetration region indicated in figure 3.3 and time-averaged. The pre-penetration
PDF ϕ̃0(b) shows the tracer-buoyancy relationship within the plume prior to penetrating the
stratified layer. Differences between ϕ̃0 and ϕ̃(b, t) represent the effect of mixing. Total tracer
in the stratified layer ϕT (t) shown inset.

of the PDF ϕ̃(b; t) db is calculated as the total tracer with buoyancy within a range b
to b+ db in the stratified layer, normalised by the total tracer in the stratified layer
ϕT (t) = ∑

V ϕ(x, t)∆V , where V is the stratified layer and ∆V is the grid-cell volume.
The definition of ϕ̃ is such that ∑B ϕ̃(B; t)∆B = 1.

Figure 3.4 shows ϕ̃(b; t) in the stratified layer at fixed time intervals post-penetration.
The total tracer in the stratified layer ϕT (t) is shown inset. The approximately linear
increase in ϕT with time suggests a relatively uniform input of tracer to the stratified
layer, carried by the penetrating plume. Owing to the self-similar nature of the
penetrating plume, we expect the tracer that enters the stratified layer to have a fixed
PDF (with some small variation). This pre-penetration PDF ϕ̃0 can be estimated using
a domain V chosen as the pre-penetration region shown in figure 3.3. This region is a
thin layer with (non-dimensional) depth 1/2 below the bottom of the stratified layer.
The pre-penetration PDF, shown as a black dashed line in figure 3.4, represents the
tracer PDF in the plume just before it penetrates the stratified layer. Without mixing,
ϕ̃ in the stratified layer would match the pre-penetration PDF. Mixing during the
penetration process manifests as changes in the tracer PDF when compared with the
pre-penetration PDF.
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Evolution of the post-penetration PDF and changes compared with the pre-
penetration tracer PDF highlight two mixing processes during penetration: mixing
within the plume during penetration, and mixing between the plume and environment.
Where plume fluid carries a large tracer concentration and mixes with the more buoyant
surroundings, the positive tail of the tracer PDF increases. This is particularly evident
after t = 6.75 when the plume has reached zmax = 3.94, at which point very large values
of buoyancy in the environment become accessible and large tracer concentrations
at the centre of the plume are exposed to the environment as plume fluid overturns.
At the edges of the plume where tracer concentration is smallest, mixing with the
environment again moves tracer from lower to higher values of buoyancy and therefore
the PDF decreases where b is small. This effect is supplemented by mixing within the
plume, which acts to homogenise the large tracer concentration and buoyancy at the
centre of the plume with the lower tracer concentration and buoyancy at the edge of
the plume. This acts to narrow the PDF and hence decrease the PDF at large and
small values of buoyancy but the effect is only evident before the plume reaches zmax

at t = 6.75 and accesses much larger values of buoyancy. At late times, most tracer
lies in the spreading intrusion at the neutral buoyancy height zn, which coincides with
the peak in the tracer PDF.

The buoyancy range of the tracer PDF is determined by the maximum penetration
height of the plume as well as the rapidity of the mixing between the plume and
environment occurring in the plume cap. If fluid quickly subsides after reaching zmax,
before substantial mixing with the environment occurs, only small amounts of the more
buoyant environment are entrained and therefore the increase in the PDF at large
values of buoyancy is modest compared with a scenario where plume fluid stalls during
overturning and significant mixing with the environment occurs. In figure 3.4, the
tracer PDF extent is b ≈ 3 whilst the environmental buoyancy at zmax is approximately
b|zmax

≈ 3.94. This suggests the mixing timescale is slow compared to the dynamical
timescale, i.e. mixing between the largest tracer concentrations first exposed during
overturning and the environment is slow and continues during subsidence, where the
buoyancy of the environment decreases.

The tracer PDF hints at competing effects of mixing within the plume and between
the plume and the environment. Crucially, the buoyancy and tracer fields are mixed
in different ways owing to the linearly increasing buoyancy and vanishing tracer
concentration in the linearly stratified environment. Whilst changes in the tracer PDF
considered here demonstrate the overall effect on the relationship between tracer and
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buoyancy, it is difficult to extract information on the intensity of mixing between plume
and environmental fluid and the specific buoyancy and tracer characteristics of the
fluid parcels that mix. Furthermore, the tracer PDF ϕ̃(b; t) does not give information
on the volume of fluid parcels at a given buoyancy; a peak in the tracer PDF may
represent relatively few fluid parcels carrying large tracer concentrations or many fluid
parcels carrying small amounts of tracer. The distinction is important, since the former
can result in stronger gradients upon which diffusion acts and therefore more effective
diapycnal transport of tracer.

3.3 Buoyancy-tracer volume distribution

The probability distributions of tracer concentration discussed in section 3.2 isolate
the irreversible transport that results from turbulent mixing. The turbulent mixing
of fluid parcels can be considered a two-step process (e.g. Davies Wykes and Dalziel
(2014)), composed of stirring and molecular diffusion. Whilst stirring strengthens
tracer gradients across buoyancy surfaces, it is – in principle – a reversible process.
However, molecular diffusion results in irreversible changes to the buoyancy and tracer
characteristics of fluid parcels and hence changes the tracer distribution.

Here, we use the distribution of volume in buoyancy-tracer space to diagnose mixing
in the stratified layer. That is, we map from 3D physical space to a 2D phase space by
using the buoyancy and tracer concentration fields to quantify the volume of plume
fluid in the stratified layer with each value of b and ϕ. The total physical volume of
plume fluid represented in the distribution changes in time and we do not normalise the
distribution to form a PDF. Omitting this normalisation simplifies the interpretation of
the distribution and its governing equation. The buoyancy-tracer volume distribution
formalism presented here builds on previous density-tracer joint PDF formulations
presented by Plumb (2007) and Penney et al. (2020).

3.3.1 Definition & properties

We define the volume distribution W (B,Φ; t) in buoyancy-tracer space such that the
volume of fluid in a fixed volume V with B < b(x, t) < B+dB and Φ < ϕ(x, t) < Φ+dΦ
is given by W (B,Φ; t)dBdΦ. This may be defined as

W (B,Φ; t) =
ˆ

V

δ(b(x, t) −B)δ(ϕ(x, t) − Φ) dV, (3.1)
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where δ(·) is the Dirac delta function with the inverse dimension of its argument.
Henceforth we choose the volume V to be the stratified layer. An evolution equation
for W can be obtained using the governing equations for b and ϕ. See appendix 3.A
for a full derivation. We have

∂W

∂t
= −∇(B,Φ) · F + S, (3.2)

where F (B,Φ; t) is mixing flux distribution and S(B,Φ; t) is the source distribution.
The mixing flux distribution F is a vector in buoyancy-tracer space with components
formed from the volume-weighted average of the non-advective terms ḃ and ϕ̇ in (2.15)
and (2.16) respectively, representing the flux of W in buoyancy-tracer space due to
mixing and is defined as

F (B,Φ; t) = (Fb, Fϕ) =
ˆ

V

(ḃ, ϕ̇) δ(b(x, t) −B)δ(ϕ(x, t) − Φ) dV, (3.3)

where ḃ = (RePr)−1∇2b− ∇ · λb and ϕ̇ = (RePr)−1∇2ϕ− ∇ · λϕ. Note that the plume
forcing terms fb and fϕ are excluded from ḃ and ϕ̇ since the forcing vanishes in the
stratified layer. The source distribution S represents a source or sink of W due to
boundary fluxes across ∂V ,

S(B,Φ; t) =
ˆ

∂V

u · n δ(b(x, t) −B)δ(ϕ(x, t) − Φ) dA, (3.4)

where u is the velocity in physical space and n is the inward normal on the boundary
∂V of V . Since we are considering a flow upwards into V , u · n is positive and S

acts as a source of W . Note that whilst S represents the effect of fluxes across the
boundary ∂V in physical space, it is distributed in buoyancy-tracer space. Note that
(3.2) contains no terms in which advection plays an explicit role except for the source
term – which captures advection through the domain boundary – representing the fact
that W remains unchanged under advection within the domain.

Turbulent mixing redistributes volume in buoyancy-tracer space, which results in
changes to W via the mixing flux term −∇(B,Φ) · F . The change in W at a point (B,Φ)
in buoyancy-tracer space as a result of turbulent mixing up to time t is therefore

M(B,Φ; t) = −
ˆ t

0
∇(B,Φ) · F (B,Φ; t′) dt′ = W (B,Φ; t) −

ˆ t

0
S(B,Φ; t′) dt′, (3.5)
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such that M(B,Φ; t)dBdΦ is the change in volume of fluid with B < b(x, t) < B + dB
and Φ < ϕ(x, t) < Φ + dΦ up to time t due to mixing. Therefore M represents the
integrated effect of the mixing flux F and we refer to M as the net mixing effect
distribution. The second equality in (3.5) follows from time-integrating (3.2) and noting
that W (B,Φ; t = 0) = 0 since there is no tracer in the initial stratified layer. Hence,
M can be interpreted as a cumulative measure of the changes to W relative to the
time-integrated source distribution, i.e. the changes in the volume distribution that
arise solely from mixing. The final term in (3.5), which we refer to as the cumulative
source distribution, represents the volume of fluid with buoyancy B < b < B + dB
and tracer concentration Φ < ϕ < Φ + dΦ that has entered the stratified layer up to
time t. The volume distribution W ≥ 0 and the cumulative source distribution is also
positive assuming there is a flow into V only. However, M can be positive or negative
depending on the relative sizes of the volume distribution and the cumulative source
distribution.

The net mixing effect distribution M(B,Φ; t) is positive in buoyancy-tracer space
where more volume is present at time t than has entered the stratified layer up to
time t, i.e. there is a net gain in the volume of fluid with buoyancy B and tracer
concentration Φ due to mixing. Correspondingly, M(B,Φ; t) is negative where more
volume has entered the stratified layer up to time t with buoyancy B and tracer
concentration Φ than currently exists at time t, i.e. there is a net loss in the volume
of fluid with buoyancy B and tracer concentration Φ due to mixing. The value of M
therefore indicates the transfer of volume within W due to mixing; fluid leaves regions
of buoyancy-tracer space with M < 0 and enters regions with M > 0.

To summarise, the distributions W,S,F and M together describe the flow in terms
of its effect on buoyancy-tracer space. The volume distribution W is an instantaneous
representation of the amount of fluid within the stratified layer with given ranges of
values of buoyancy and tracer concentration. Large values of W indicate large volumes
of fluid with a narrow range of b and ϕ, though the fluid parcels corresponding to
this range are not necessarily co-located in physical space. The source distribution
S represents the volume distribution of fluid that enters the stratified layer from the
uniform layer. In the absence of mixing, W would be equivalent to the time integral of
S. The mixing flux distribution F represents the redistribution of fluid in buoyancy-
tracer space due to mixing. The net mixing flux distribution M captures the change
in W relative to time-integrated S via F and indicates where there is accumulation or
loss of volume due to mixing.
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Fig. 3.5 Schematic diagram of the effect in buoyancy-tracer space of an idealised turbulent
mixing event between a set of discrete fluid parcels that have entered the stratified layer
(blue dots) and a fluid parcel that later enters the stratified layer (green dot). (a), (b) and (c)
illustrate the convex envelope property of the volume distribution W , which implies that a
mixture of a set of fluid parcels lies within the smallest envelope that contains the distribution
of the fluid parcels that are mixed together. The distributions W,

´
S dt and M following the

idealised mixing event are shown in (d), (e) and (f), respectively. Positive (arbitrary) values
of each distribution are indicated by a circled +, negative (arbitrary) values are indicated by
a circled − in (d), (e) and (f). The mixing flux distribution vectors F are indicated by grey
arrows in (c) and (d).
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3.3.2 Idealised example

The effect of an idealised turbulent mixing event on buoyancy-tracer space is illustrated
in figure 3.5. The top row shows the volume distribution containing three initial fluid
parcels (blue points) which have entered the stratified layer. As turbulent stirring brings
these fluid parcels together, another fluid parcel (green point) enters the domain and all
four fluid parcels mix. The resulting mixed fluid parcel (red point) is a volume-weighted
average of the fluid parcels involved in the mixing event. The bottom row shows the
distributions after the mixing event. The volume distribution W is non-zero (and
positive) only where the final mixture lies in buoyancy-tracer space and the direction
of the mixing flux vectors F indicates the redistribution of volume. The cumulative
source distribution

´ t

0 S dt′ is positive at the values of b and ϕ where the fluid parcels
entered the domain and vanishes elsewhere. The net mixing effect distribution M is
negative at these points, as volume has been lost, and positive where the mixed fluid
parcel lies as volume has been gained. These principles can be used to understand
the mixing processes in the physical flow that result in changes in the distribution in
buoyancy-tracer space. Whilst it is not possible to isolate distinct fluid parcels that are
mixing at any one time, we can identify physical regions of the flow that are subject to
turbulent mixing and isolate the corresponding regions of buoyancy-tracer space.

Turbulent mixing acts to homogenise the buoyancy and tracer concentration of
fluid parcels. Provided the molecular diffusivities of buoyancy and tracer are equal, a
mixture of two fluid parcels lies on a line between the two parcels in buoyancy-tracer
space (Penney et al., 2020). Therefore, as the buoyancy-tracer volume distribution W

evolves, it is constrained to lie within its own past convex envelope, i.e. the smallest
convex set that contains all non-zero points of the distribution. As illustrated in
figure 3.5, this convex envelope must include fluid that enters the domain during the
mixing process. The convex envelope of the initial volume distribution is indicated by
the dotted envelope and the dashed envelope indicates the convex envelope including
newly-arriving fluid parcels. We emphasise that the final mixed fluid parcel is contained
within the convex envelope of initial and newly-arriving fluid, but not necessarily within
the convex envelope of the initial fluid only. The principle of homogenising fluid parcels
illustrated in figure 3.5 can be generalised to continuous mixing of fluid in a flow, in
which case the convex envelope constraint applies to the volume distribution as a whole.
This implies that in the absence of sources the convex envelope reduces over time
and converges towards some compact distribution (Penney et al., 2020). In the setup



3.3 Buoyancy-tracer volume distribution 69

we consider, fluid entering the stratified layer causes the extremes of the distribution
to persist, whilst turbulent mixing acts to continuously shift the buoyancy-tracer
characteristics of fluid towards an accumulation region in buoyancy-tracer space.

3.3.3 Numerical implementation

To examine the numerical simulation detailed in § 3.2, we use a discrete formulation of
the buoyancy-tracer volume distribution introduced in §3.3.1. We choose the domain
V to be tracer-containing plume fluid within the stratified layer. The stratified layer
initially corresponds to the volume z ≥ 0. However, the plume can perturb the bottom
of the stratified layer slightly below z = 0. We therefore define the domain as the
region where −1 ≤ z ≤ Lz, ϕ > ϕmin, and b > 0. As a consequence, the ‘reservoir’
of environmental fluid where ϕ = 0 is excluded. In interpreting results, we therefore
consider the boundary ϕ = ϕmin as a source where volume can enter the distribution
from the environment. The entrainment of environmental fluid across this boundary in
buoyancy-tracer space into the volume distribution is discussed in §3.3.7 and illustrated
in figure 3.8.

The buoyancy and tracer domains are subdivided into Nb and Nϕ equally sized
bins of size δB = (bmax − bmin)/Nb and δΦ = (ϕmax − ϕmin)/Nϕ respectively. We
choose bmin = 0 and bmax = 4 since the largest accessible buoyancy is related to the
maximum penetration height (Ansong et al., 2008) which is experimentally predicted
to be zmax ≤ 4 (List, 1982). To accommodate fluctuations in tracer concentration,
we choose ϕmax to be larger than the tracer concentration on the plume centreline
2ϕm(0) at penetration height z = 0 using the profile predicted by the Morton et al.
(1956) plume equations, ϕm(z), defined in (2.6) (see chapter 2 for details). We use
ϕmin = 10−2, consistent with the plume threshold introduced in §3.2. Henceforth we
use Nb = Nϕ = 256.

Denoting the centre of a given bin as (Bi,Φj), the associated value of the volume
distribution is computed as

Wij(t) =
∑
V

Iij(x, t)∆x∆y∆z (3.6)
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where the sum is over all grid points within the domain V , ∆x,∆y,∆z are the grid-cell
widths, and the indicator Iij(x, t) is defined as

Iij(x, t) =


1 (b(x, t) −Bi, ϕ(x, t) − Φj) ∈

(
−1

2δB,
1
2δB

]
×
(
−1

2δΦ,
1
2δΦ

]
,

0 otherwise.
(3.7)

The value of Wij(t) therefore represents the total volume within V where the buoyancy
lies within δB/2 of Bi and the tracer concentration lies within δΦ/2 of Φj. Note
that in the continuous formulation, the volume distribution W (B,Φ; t) defined by
(3.1) must be integrated over B and Φ to yield a volume, whilst Wij(t) itself has
dimensions of volume and need only be summed over i and j. The continuous and
discrete formulations coincide in the limit δB, δΦ → 0, such that

lim
δB,δΦ→0

Wij(t)
δBδΦ = W (Bi,Φj; t). (3.8)

The equivalence (3.8) also applies to the discrete mixing flux distribution Fij(t), the
discrete source distribution Sij(t) and the discrete net mixing effect distribution Mij(t)
defined by

Fij(t) = (F b
ij(t), F

ϕ
ij(t)) =

∑
V

Iij(x, t)(ḃ, ϕ̇)∆x∆y∆z, (3.9)

Sij(t) =
∑
∂V

Iij(x|z=−1 , t)w(x|z=−1 , t)∆x∆y, (3.10)

Mij(t) = Wij(t) −
∑
t′
Sij(t′)∆t′, (3.11)

where ∆t′ is the simulation time step shown in table 3.1. In (3.9), ḃ and ϕ̇ are the
non-advective terms in the scalar evolution equations (2.15), (2.16) of b, ϕ respectively,
as defined in §3.3.1. In (3.10) we have used the fact that n = k̂ on the bottom
boundary of the domain V .

To validate use of the buoyancy-tracer volume distribution, and to verify that mixing
is well represented in our LES, we ensure that quantities of interest are sufficiently well
resolved and that the results are not strongly dependent on the model resolution. We
primarily focus on the volume distribution W . Figure 3.6 shows the volume distribution
W (b, ϕ; t) at non-dimensional time t = 10 in four simulations with identical parameters
(as described in § 3.1) except for the resolution: 1282 × 129, 2562 × 257, 5122 × 513
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Fig. 3.6 Buoyancy-tracer volume distribution W (b, ϕ; t), defined in § 3.3.1, at t = 10 in four
simulations with resolution 1282 × 129, 2562 × 257, 5122 × 513 and 10242 × 1025 left to right.

(the main simulation presented in this chapter), and 10242 × 1025. To aid comparison,
W is normalised by the full plume volume ∑ij Wij(t). The structure of the distribution
is similar at all resolutions – details of this structure are discussed in the following
section. There is some noise in the distribution at lower resolution, since the smaller
number of grid cells offers a smaller sample of the values of buoyancy and tracer
concentration. The only element of the volume distribution structure that notably
changes with resolution is the extent of the source line where b ∝ ϕ. This can be
attributed to poor representation of the forcing profile at lower resolution as discussed
in § 2.3 which effectively reduces the source buoyancy flux.

Unphysical oscillations referred to as Gibbs ringing (see § 2.3.3) affect the volume
distribution in two regions of physical space where particularly strong gradients of b
and ϕ arise. Ringing that occurs in the plume cap, above the intrusion, imprints on the
value of the buoyancy in the plume, shifting a small amount of volume to the left of
the main distribution in buoyancy-tracer space which produces a ‘bulge’ in the volume
distribution. This is evident in figure 3.6, particularly panels (c) and (d). Whilst
the effect appears prominent, this is largely a result of the chosen colour map; the
bulge contains only 0.77% of the full plume volume at t = 10 in the main 5122 × 513
simulation presented in this chapter. To aid clarity, the bulge is excluded from figures
presented henceforth. Fluid associated with the bulge is treated as if in the main bulk
of the distribution by replacing its buoyancy with the corresponding value in the main
distribution (i.e. on the ‘source line’ which is described in the following section). To
handle negative values of b and ϕ we use the absolute value of the buoyancy and tracer
concentration fields, |b| and |ϕ|, to calculate the source distribution S and the mixing
flux distribution F . Note this has no effect on the calculation except for fluid affected
by Gibbs ringing since ϕ and b are positive otherwise.
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3.3.4 Results

The discrete formulation of the distributions given in §3.3.3 provides an approximation
to the continuous formulation and is presented in all figures shown below. However,
the interpretation is the same in both the continuous and discrete formulations and
we will refer to the continuous formulation in all discussions. Quantities derived from
the distributions are given in both continuous and discrete forms for completeness. In
defining the discrete and continuous formulations we use the arguments B and Φ, which
represent values of buoyancy and tracer concentration respectively. We treat W, F , S

and M as functions of b and ϕ to aid clarity, e.g. W (b, ϕ; t), with the interpretation
that b and ϕ represent values of buoyancy and tracer concentration found in the flow
in the same way as B and Φ in §3.3.1 and §3.3.3.

Figure 3.7 shows the buoyancy-tracer volume distribution W (b, ϕ; t) (middle row),
the source distribution S(b, ϕ; t) (bottom row), and x-z cross-sections of the tracer
concentration field and buoyancy contours (top row). These results are shown at
three time steps representative of stages in the flow evolution as in figure 3.1. The
distributions are shown only where non-zero, i.e. regions of buoyancy-tracer space which
are not coloured indicate that there is no fluid with buoyancy and tracer concentration
in that range. In each snapshot of W , the red dashed lines show the convex envelope
that constrains the evolution of the volume distribution. As seen in the figure, the
source distribution lies within the convex envelope of W (b, ϕ; t). Furthermore, as the
plume rises and accesses more buoyant fluid in the surrounding environment, the
convex envelope is extended along the ϕ = 0 axis as new environmental fluid becomes
accessible via mixing.

The results shown in figure 3.7 illustrate how the volume distribution captures the
dynamics and mixing processes at each stage of the flow evolution. We first note that
the source distribution S(b, ϕ; t) takes positive values only, since there is only a flow
into the stratified layer. Furthermore, S is non-zero only on a line through the origin
as expected from the linear relationship between b and ϕ in the rising plume. We refer
to this as the source line. Given that the convex envelope of a set of points on a line
segment is the same line segment, mixing of undiluted plume fluid within the plume
only redistributes fluid on the source line. When undiluted plume fluid mixes with the
surrounding environment, it is moved away from the source line. This offers a clear
distinction between undiluted and mixed plume fluid, as illustrated schematically in
figure 3.8. In the buoyancy-tracer volume distribution W shown on the middle row of
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Fig. 3.7 Three instantaneous snapshots showing the evolution of the buoyancy-tracer
volume distribution W (b, ϕ; t) (middle) and source distribution S(b, ϕ; t) (bottom) at non-
dimensional times t = 1, 6.75, 14 corresponding with figure 3.1. The convex envelope of the
volume distribution W at time t is shown as a red dashed line in the middle panel. To aid
interpretation, we also show x-z cross-sections of the tracer concentration and buoyancy
contours, as in figure 3.2 (top)
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Fig. 3.8 Schematic diagram illustrating the correspondence between regions in physical
space and regions in buoyancy-tracer space. Environmental fluid is represented by the b axis
where ϕ = 0 (red), between the bottom of the stratified layer where b = 0 and the maximum
penetration height where b = zmax. Undiluted plume fluid lies on the source line where
ϕ ∝ b (blue), with large b and ϕ in the core of the plume and small b and ϕ towards the
edges. Mixed fluid lies between these two lines, within their convex envelope (dotted gray).
Some regions of the convex envelope (hatched area) are inaccessible due to the shielding
effect of the plume edge (where ϕ is non-zero but small) and the intrusion surrounding the
rising plume. Volume entering the distribution due to entrainment of environmental fluid is
indicated by the red arrows.

figure 3.7, fluid appearing away from the source line therefore represents a mixture of
plume and environmental fluid. Further information on the regions of the undiluted
plume that mix with the environment is gained by noting that, owing to the Gaussian
profiles of the plume pre-penetration, b and ϕ are larger near the centreline of the
plume and smaller towards the edge of the plume (see figure 3.7(c)). Hence fluid near
the ‘plume edge’ lies nearest the origin on the source line whilst fluid in the ‘plume
core’ lies at the extreme end of the source line.

Figure 3.7(a) shows the plume shortly after penetrating the stratified layer and
before reaching its maximum penetration height. At this stage, only the edges of the
plume are exposed to the environment in the lower part of the stratified layer which
has a relatively small buoyancy. We therefore find volume appearing in a small region
of the convex envelope closest to the origin in buoyancy-tracer space. In figure 3.7(b),
the plume has reached its maximum penetration height and undiluted plume fluid in
the plume core, which has until this stage been shielded from the environment by the
edges of the plume, overturns and becomes exposed to environmental fluid near zmax

with relatively large buoyancy. The volume distribution at this time covers a wider



3.3 Buoyancy-tracer volume distribution 75

range of b and ϕ as environmental fluid with a large range of buoyancy is able to mix
with much of the undiluted plume fluid lying on the source line. However, note that we
do not see mixing between the extreme end of the source line and the environment (see
hatched region in figure 3.8). As undiluted plume fluid in the core of the plume rises,
turbulent mixing acts to homogenise the buoyancy and tracer concentration within the
source distribution, reducing the largest values of b and ϕ near the centreline of the
plume. Hence when this fluid is first exposed to the environment in the plume cap,
it lies closer to the middle of the source line. We refer to this as the shielding effect.
Note that the large values of b and ϕ on the source line appear to persist, and may
increase, due to new undiluted plume fluid entering the stratified layer.

Figure 3.7(c) shows the quasi-steady state plume where there is a continuous
input of undiluted plume fluid along the source line ϕ ∝ b, mixing between the
plume and environment up to values of buoyancy corresponding to heights near zmax

and an accumulation of fluid at lower values of buoyancy and tracer concentration
corresponding to the radially spreading intrusion. The intrusion dominates the total
volume of the plume at late times and is represented by the region of large W at
intermediate values of buoyancy and tracer concentration. Note that the intrusion
enhances the shielding effect by preventing undiluted plume fluid from accessing the
environment before reaching the plume cap.

3.3.5 Quasi-steady state

In this flow, quasi-steady state refers to the long-term behaviour established once an
intrusion has formed. In this state, undiluted plume fluid continuously arrives in the
stratified layer, mixes with the environment, and accumulates in the intrusion. This
means that in quasi-steady state the volume of undiluted plume fluid in the stratified
layer remains roughly constant whilst the full plume volume (i.e. the sum of the
rising undiluted plume, plume cap and intrusion), and in particular the volume of the
intrusion, increases monotonically.

To quantitatively identify the time at which quasi-steady state (QSS) starts, first
we define the source line more generally as the region where the cumulative source
volume is positive, S = {(b, ϕ)|

´ t

0 S(b, ϕ; t′) dt′ > 0}. Next we can define the volume
associated with any region R of buoyancy-tracer space at time t as

V (R; t) =
ˆ

R
W (b, ϕ; t) dbdϕ =

∑
R
Wij(t). (3.12)
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Fig. 3.9 (a) Volume of the source line S = {
´ t

0 S(b, ϕ; t′) dt′ > 0} (dashed line) and the
region U = {M(b, ϕ; t) < 0} (solid line). The start of quasi-steady state (vertical dotted line)
is identified as the time when these volumes agree to within 10%. (b) Decomposition of the
full plume volume into undiluted plume fluid, plume cap, and intrusion (solid coloured lines)
using the partitioning introduced in §3.3.6. The total plume input volume up to time t (black
dashed line) is shown for reference.

We expect that in quasi-steady state dV (S)/dt ≈ 0. However, ‘plume bobbing’ (i.e.
the up-and-down motion of the plume cap noted in §3.2) results in some variation
of the volume of the source line. The quasi-steady volume of undiluted plume fluid
V (S) can also gradually increase over time owing to the shielding effect. We therefore
introduce an alternative constraint which utilises the net mixing effect distribution M .
As illustrated in figure 3.8, the source line represents undiluted plume fluid arriving in
the stratified layer, which introduces volume into the distribution that is eventually
mixed away from the source line. In the transient penetration stage, turbulent mixing
redistributes fluid on the source line before mixing with the environment. Hence there
is some accumulation on parts of the source line and M > 0. However, once the plume
reaches QSS and mixing with the environment continuously removes volume from the
source line, M must become negative. Away from the source line, S vanishes so M is
necessarily positive according to (3.5). We define the region U = {(b, ϕ)|M(b, ϕ; t) < 0}
and identify QSS as the time when the volume associated with U , V (U), is within 10%
of the volume of the source line V (S). These volumes and the time we identify as the
start of QSS, tQSS ≈ 3.5, are shown in figure 3.9(a).
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3.3.6 Source, transport and accumulation regions

We now restrict attention to quasi-steady state (QSS) t > tQSS, i.e. ignoring any
transient dynamics during initial penetration. Here, we discuss the results for M and
show that this distribution can be used to partition plume fluid into three classes which
identify coherent regions of the plume.

Figure 3.10 shows the net mixing effect distribution in both physical and buoyancy-
tracer space at t = 14, with the mixing flux distribution vectors F overlaid in buoyancy-
tracer space. The distribution is represented in physical space by using the buoyancy
and tracer concentration to map between buoyancy-tracer space and physical space, i.e.
we plot M(b(x, t), ϕ(x, t); t). To avoid confusion between regions of buoyancy-tracer
space and the corresponding fluid in physical space, we refer to the former as regions
and the latter as classes of fluid. Recall that the net mixing effect distribution, M ,
quantifies the integrated effect of the mixing flux distribution, F , or, equivalently,
the volume difference between the volume distribution and the cumulative source
distribution, representing the volume change due to mixing. Note that fluid associated
with the erroneous bulge formed due to Gibbs ringing is coloured as if it lies on the
source line with the same value of ϕ but modified value of b. As expected, we find
M < 0 on the source line where undiluted plume fluid is continuously supplied before
being mixed away into the M > 0 region. Environmental fluid is entrained into the
plume via mixing and accumulates in the intrusion where M is maximised. We define
class U as undiluted plume fluid corresponding to the source region U = {M < 0},
introduced in the definition of QSS in §3.3.5. For convenience, we use the notation
{M < 0} as shorthand for {(b, ϕ)|M(b, ϕ; t) < 0} henceforth. The mixing flux vectors
point along the source line, indicating that mixing within U is mostly within the plume
rather than between the plume and environment, owing to the shielding effect. Once
undiluted plume fluid is exposed to the environment, there is a strong mixing flux
between U and the ϕ = ϕmin axis where environmental fluid joins the distribution.

As discussed in §3.3.1, we expect volume to accumulate in some region of buoyancy-
tracer space. This is clearly demonstrated in physical space, where fluid collects in the
intrusion after mixing with the environment. We can distinguish the accumulation re-
gion from the ‘transport’ region through which volume moves to reach the accumulation
region by identifying a region in which M is small and approximately constant. In this
region, plume fluid is actively mixing with the environment and transporting volume
away from the source line, but fluid does not accumulate in this region. Then, fluid
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Fig. 3.10 Snapshots at non-dimensional time t = 14 of the buoyancy-tracer net mixing effect
distribution, M(b, ϕ; t), in buoyancy-tracer space (top) and (bottom) in an x-z cross-section
of physical space. Buoyancy contours are shown in the surrounding environment. The mixing
flux distribution, F , is overlaid in the top panel and the vectors are uniformly scaled to be
visible.
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Fig. 3.11 (a) Total flux divergence f(m; t) defined in (3.13) and (b) resulting preliminary
and smoothed threshold choices. (c) Error in f from smoothing process.

that has undergone significant mixing and accumulates in the intrusion corresponds
with a region where M is increasing with time. The regions are distinguished by a
time-dependent threshold m∗(t) such that the transport region, where much of the
transition from undiluted to mixed plume fluid occurs, is T = {0 < M ≤ m∗} and
we refer to fluid corresponding to this region as class T. The accumulation region is
A = {M > m∗} with corresponding mixed fluid accumulating in the intrusion referred
to as class A. The threshold m∗(t) is found by identifying the value m which minimises
the total mixing flux convergence f(m; t) associated with a region {0 < M ≤ m(t)} at
each time t, where

f(m; t) =
ˆ

{0<M≤m}

dW
dt − S dbdϕ = −

ˆ
{0<M≤m}

∇(b,ϕ) · F dbdϕ, (3.13)

so that the volume that enters the region T is approximately equal to the volume
leaving T . Then, remaining mixed fluid lies in the region A which must capture the
accumulation of mixed fluid, formed from undiluted plume fluid that has entered the
stratified layer and entrained environmental fluid.
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This method is numerically implemented using the discrete form of the volume
distributions. At each timestep k,

1. identify the current maximum value of M throughout buoyancy-tracer space,
denoted M = maxi,j Mij(tk);

2. for each of NM test values of M , m = 0, . . . ,M, calculate

f(m; tk) ≈
∑

i,j|0<Mij≤m

[
Wij(tk+1) −Wij(tk)

∆t − Sij(tk)
]

; (3.14)

3. identify the test value m̃(tk) which minimises f(m; tk).

Then, once a threshold m̃(tk) has been chosen for each timestep tk, the final threshold
m∗(t) is chosen by applying a rolling average with an appropriate number of timesteps.
We choose NM = 200 and a rolling average width of 10 timesteps. The motivation
for applying a rolling average is to smooth the threshold m∗(t) so that the regions
T and A do not grow and shrink dramatically in response to short-term changes in
the flux divergence. Figure 3.11(a) shows the total flux convergence f(m; t) for all
times post-penetration and figure 3.11(b) shows the time variation of the corresponding
preliminary thresholds m̃(t) and the final thresholds m∗(t). The total mixing flux
convergence of class T for the preliminary and final thresholds over time is shown
in figure 3.11(c), indicating the (generally small) error introduced by smoothing the
thresholds.

The net mixing effect distribution with this partitioning is shown in figure 3.12,
with class U coloured blue, class T coloured green and class A coloured red. Within
classes U and A, the volume weighted centre-of-mass is shown by a coloured triangle,
approximately indicating the position in buoyancy-tracer space towards which mixing
acts to move fluid within each class. Internal plume mixing of undiluted plume fluid
redistributes volume on the source line towards the blue triangle and homogenisation
of mixed fluid in the intrusion accumulates volume near the red triangle. Figure 3.12
demonstrates the correspondence between the regions U , T and A and coherent
structures of the plume. The source region U identifies the rising undiluted plume.
The accumulation region A identifies the radially spreading intrusion. The transport
region T corresponds with newly-generated mixtures in the plume cap and subsiding
fluid joining the intrusion. The partition of the full plume volume into the undiluted
plume, plume cap, and intrusion volume is shown in figure 3.9(b) for t > tQSS. As
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Fig. 3.12 As in figure 3.10, with the distribution partitioned into three regions: U (blue)
where M ≤ 0, T (green) where 0 < M ≤ m∗(t) and A (red) where M > m∗(t). The threshold
m∗(t) minimises the total mixing flux convergence defined by (3.13). Corresponding fluid
classes U, T and A (respectively) shown in physical space. Triangles represent the volume-
weighted centre-of-mass in class U (blue) and class A (red). Undiluted plume fluid in U is
mixed towards the blue triangle whilst fluid accumulating in A is mixed towards the red
triangle.

expected, we find that the volume of the intrusion (class A) dominates the plume at
late times, as the volume of undiluted plume fluid and the plume cap each remain
approximately constant.

3.3.7 Entrainment

We calculate the entrained volume E(t) as the difference between the volume of the
full plume and the cumulative volume of the source term S up to time t, so that E
represents the volume of environmental fluid that has been mixed into the plume up
to time t. We have

E(t) ≡
ˆ

{W >0}
W (b, ϕ; t) dbdϕ−

ˆ t

0

ˆ
{W >0}

S(b, ϕ; t′) dbdϕdt′ (3.15)

= −
ˆ t

0

ˆ
{W >0}

∇(b,ϕ) · F (b, ϕ; t′) dbdϕdt′ (3.16)

=
ˆ t

0

ˆ
{ϕ=ϕmin}

Fϕ(b, 0; t′) dbdt′ ≈
∑
t′

∑
i

F ϕ
i,j=0(t′)
∆ϕ ∆t′, (3.17)

where the second equality follows from time-integrating (3.2) and the final equality
follows from Green’s theorem and the fact that the mixing flux F vanishes on the
boundary of the {W > 0} region except on the surface ϕ = ϕmin where environmental
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Fig. 3.13 Entrainment profile e(b, t) defined by (3.18) at fixed time intervals post-penetration.
The value e(b, t) is the volume of environmental fluid entrained up to time t, per unit buoyancy,
as a function of buoyancy b.

fluid enters the volume distribution via entrainment. The numerical calculation of E
using the discrete form of the mixing flux distribution F ϕ

ij is given by (3.17).
A common definition of an ‘entrainment profile’ with respect to height is the

fractional volume (or mass) increase with height (e.g. De Rooy et al. (2013)). This is
not a useful definition in the case where the plume overturns, since the rate of change
with height captures multiple components of the plume which act to entrain fluid in
(potentially) different ways. Exploiting the linear increase of buoyancy with height in
the initially linearly stratified environment, we treat buoyancy as a rough proxy for
height and define an entrainment profile with respect to buoyancy,

e(bi, t) =
ˆ t

0
Fϕ(bi, 0; t′) dt′ ≈

∑
t′

F ϕ
i,j=0(t′)
∆ϕ∆b ∆t′, (3.18)

which represents the volume of environmental fluid entrained up to time t per unit
buoyancy. We can then define the volume entrained into a region R of buoyancy-tracer
space which intersects the ϕ = ϕmin boundary as

E(R, t) =
ˆ t

0

ˆ
{ϕ=ϕmin}∩R

Fϕ(b, 0; t′) dbdt′ =
ˆ

{ϕ=ϕmin}∩R
e(b, t) db, (3.19)

which is numerically calculated by summing over the indices i in (3.18) which belong
to the intersection of R with the boundary ϕ = ϕmin. Note this definition implicitly
assumes that the intersection between R and {ϕ = ϕmin} is time-independent. We
define the entrainment rate as the time rate of change of the entrained volume into a
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Fig. 3.14 (a) Volume of environmental fluid entrained up to time t (black line) and its
decomposition into entrainment into the regions U , T and A (coloured lines). These regions
are defined in §3.3.6 and the entrained volumes E(U), E(T ) and E(A) are computed using
(3.19). (b) Specific entrainment rate in each class, defined as the ratio of the rate of change
of the entrained volume and the volume, e.g. Ė(U)/V (U). In both plots, the vertical dotted
line indicates the start of the quasi-steady state.

region R, i.e. Ė(R) = ∂tE(R). This quantifies the rate at which volume is entrained
into a physical volume represented by a region R in buoyancy-tracer space. Whilst
we expect vigorous mixing at the boundary between a sub-volume of the plume and
the environment to result in entrainment, the entrainment rate Ė does not necessarily
quantify this since larger volumes would be expected to entrain more volume over
time even if the ‘strength’ of the mixing is weaker (assuming that fluid parcels lying
in the region R of buoyancy-tracer space are approximately co-located in physical
space). To quantify the strength of the entrainment into each sub-volume of physical
space corresponding to a partitioning of buoyancy-tracer space, we define the specific
entrainment rate as the ratio of the entrainment rate with the volume of each sub-region
itself, i.e. Ė(R)/V (R) for each region R = U , T ,A.

Figure 3.13 shows the evolution of the entrainment profile through the simulation.
Significant entrainment occurs over a large range of intermediate buoyancy values,
indicating that most entrained volume is from the environmental fluid surrounding the
intrusion. Using the partitioning introduced in §3.3.6, the entrained volume can be
decomposed into the volume entrained into the plume cap E(T ), the volume entrained
into the intrusion E(A), and the volume entrained just before penetrating the stratified
layer E(U). Figure 3.14(a) shows the entrained volume as well as its decomposition.
Here, a correction has been made to E(t) to account for numerical artefacts: volume
associated with the bulge is included as part of class U when computing the volume
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of undiluted plume fluid V (U). Figure 3.14(b) shows the entrainment rate in each
of the regions U ,A and T . The relative contribution of plume cap entrainment and
‘lateral’ entrainment in the intrusion to the overall entrainment is noted as an open
question in the study of fountains by Hunt and Burridge (2015), where the plume cap
is analogous to the ‘fountain-top’. Here we find that the contribution to the entrained
volume from the plume cap (class T) is weak compared with the intrusion (class A)
when in quasi-steady state. Under the definition of quasi-steady state for this flow
given in section 3.3.5, volume continuously accumulates in the intrusion and hence the
volume of the intrusion dominates the volume of the full plume at late times. Since
the intrusion spreads radially, there is a greater contact area between the intrusion
and the surrounding environmental fluid compared with the plume cap and the rising
plume. This allows a greater volume of environmental fluid to be entrained into the
intrusion. This suggests that entrainment of environmental fluid from the lower part
of the stratified layer into the intrusion is important for setting the centre-of-mass of
the quasi-steady state buoyancy-tracer distribution, primarily by diluting the tracer
concentration (b is relatively unchanged since the intrusion is, by definition, neutrally
buoyant). However, mixing during the overturning process in the plume cap near zmax

is important for setting the maximum accessible buoyancy of the volume distribution
after mixing, and therefore the extent of the accumulation region in buoyancy-tracer
space. The specific entrainment rate is larger in class T than in class A, indicating
stronger mixing with the environment in the plume cap in quasi-steady state compared
with the intrusion.

3.3.8 Three-stage mixing process

Together, the results presented in this section suggest a multi-stage mixing process
in quasi-steady state convective penetration. This is summarised in figure 3.15, in
which we show schematics of the volume distribution partitioned into three regions
U , T , and A of buoyancy-tracer space, and the corresponding classes of fluid in cross-
sections of the plume. Fluid moves through each stage of mixing from top to bottom,
corresponding with an increasing value of the net mixing effect M , though occasionally
the primary mixing stage may be skipped – see following discussion. In each stage,
the convex envelope of fluid involved in mixing is indicated by a gray dashed line in
(b, ϕ)-space; arrows in (b, ϕ)-space indicate the movement of individual fluid parcels
due to the mixing process; and circular arrows in the x-z cross-section indicate the
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Fig. 3.15 Schematic of the three stage mixing process in quasi-steady state convective
penetration of a buoyant plume into a stably stratified layer, identified by the partitioned
buoyancy-tracer volume distribution. Buoyancy-tracer space is shown in (a), (c) and (e),
with arrows indicating the movement of volume within each mixing stage. The region of
buoyancy-tracer space affected by mixing in each stage is indicated by a gray dashed envelope.
Physical space is shown in (b), (d) and (f), with circular arrows indicating where mixing is
located. In the secondary mixing stage in (e) and (f) the three distinct mixing processes are
shown as dotted, dashed and solid arrows, both in physical and buoyancy-tracer space.
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location of mixing in physical space. These circular arrows are illustrative and are not
intended to indicate the physical nature of the mixing mechanism in each stage. In the
secondary mixing stage where multiple mixing processes occur simultaneously, three
arrow types are shown which correspond between physical and buoyancy- tracer space.
The mixing stages in QSS convective penetration are as follows:

1. Mixing within the rising plume as undiluted plume fluid penetrates into the
stratified layer. This fluid is shielded from the surrounding environment. Thus,
in buoyancy-tracer space, internal mixing of undiluted plume fluid acts within
U only, homogenising the distribution and consequently moving fluid towards
the centre-of-mass of class U indicated by the blue triangle in figure 3.12. This
sets the buoyancy-tracer characteristics of plume fluid that is first exposed to
environmental fluid near zmax.

2. Primary mixing between the plume and environment occurs in the plume cap.
This mixing may extend below the plume cap into the intrusion as the mixing
timescale is slow compared to the dynamical timescale. In buoyancy-tracer space,
the primary mixing stage acts on the undiluted plume fluid concentrated near
the class U centre-of-mass and the surrounding environmental fluid with values
of buoyancy close to b = zmax. The resulting mixtures are transported towards
intermediate values of buoyancy as indicated by the mixing flux distribution in
figure 3.10(a).

3. After primary mixing with the environmental fluid, subsiding mixed fluid joins
the intrusion and homogenises with its surroundings, moving from class T to class
A (dashed arrows). A number of mixing processes act on the fluid accumulating
in class A. In buoyancy-tracer space, mixing occurs between four regions of fluid
as indicated by the convex envelope in figure 3.15. Secondary mixing with the
environment occurs as environmental fluid lower in the stratified layer is entrained
into the intrusion as it spreads (solid arrows), dominating the volume entrained
by the full plume at late times. At the edges of the rising plume, undiluted
plume fluid mixes with fluid already in the intrusion, resulting in some fluid
parcels moving directly from class U to class A without entering the primary
mixing stage (dotted arrows) as seen in figure 3.10(a). Finally, mixing in the
interior of the intrusion homogenises the buoyancy-tracer distribution of fluid
that accumulates within region A. As fluid moves radially, large volumes of fluid
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in class A are concentrated near the centre-of-mass in (b, ϕ)-space, where M (and
W ) are largest.

3.4 Mixing diagnostics

In this section we use the partitioning introduced in § 3.3.6 to examine the statistics
of mixing in each stage of the plume evolution.

3.4.1 Characterising mixing

To characterise the physical nature of the mixing in each stage, we consider the mixing
efficiency which relates the total energy expended in turbulent mixing with the actual
mixing achieved (e.g. Davies Wykes et al. (2015)). The most useful definition depends
on context, e.g. Gregg et al. (2018) for oceanographic contexts and Chemel and Staquet
(2007) for an atmospheric setting. In buoyancy-driven stratified flows, the mixing
efficiency is quantified by utilising the partitioning of potential energy into available
potential energy (APE) and background potential energy (BPE). For an incompressible,
Boussinesq flow BPE is the potential energy that is not available to do work whilst
APE represents the energy stored in the buoyancy field if the flow is not in gravitational
equilibrium (Davies Wykes et al., 2015; Lorenz, 1955). Turbulent mixing irreversibly
converts APE into BPE and results in dissipation of turbulent kinetic energy (TKE).
The conversion of APE into BPE quantifies the energy expenditure that results in
mixing of the buoyancy field and its sum with the TKE dissipation represents the total
energy expended by turbulent mixing. The ratio of these two quantities forms the
mixing efficiency. Following Howland et al. (2020) and Holliday and Mcintyre (1981),
in the case where ∂zb is constant in the initial stratified environment we may treat the
quadratic form of the potential energy,

Ep = 1
2⟨b′2⟩, (3.20)

as a proxy for available potential energy. Here, b′(x, t) = b(x, t) − z is the departure
from the linear initial stratification and ⟨·⟩ denotes a volume average. We refer to Ep as
the perturbation potential energy (PE). A full derivation of the perturbation PE budget
is given in appendix 3.B, which follows the derivation as described in Howland et al.
(2020) except with SGS terms included. The irreversible conversion of perturbation PE
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to BPE that results from the reduction of buoyancy gradients by mixing is captured
by the buoyancy variance dissipation rate,

χ = κtot |∇b′|2, (3.21)

where κtot = (RePr)−1 + κ
(b)
SGS is the total diffusivity of buoyancy. The buoyancy

variance dissipation rate represents the primary sink of Ep. The instantaneous energy
dissipated via turbulent mixing is the sum of χ and the dissipation rate of TKE,

ε = νtot
∂ui

∂xj

∂ui

∂xj

, (3.22)

where νtot = Re−1 + νSGS is the total viscosity. The TKE dissipation rate acts as the
primary sink of turbulent kinetic energy. The instantaneous mixing efficiency η is then

η = ⟨χ⟩
⟨χ⟩ + ⟨ε⟩

, (3.23)

as in e.g. Howland et al. (2020); Peltier and Caulfield (2003). We use ⟨·⟩ to denote a
volume average. It is instructive to examine the spatial structure of the dissipation
rates. In particular, regions of large χ indicate intense buoyancy gradients and regions
of large ε indicate intense turbulent motion.

Further information on the state of turbulence in stratified flows is often drawn
from the buoyancy Reynolds number Reb ≡ ⟨ε⟩/νN2

0 . We define a pointwise activity
parameter I and its mean ⟨I⟩,

I =
∂ui

∂xj

∂ui

∂xj∣∣∣ ∂b
∂z

∣∣∣ = ε

νtot

∣∣∣ ∂b
∂z

∣∣∣ , ⟨I⟩ = ⟨ε/νtot⟩
⟨
∣∣∣ ∂b

∂z

∣∣∣⟩ . (3.24)

The bulk property ⟨I⟩ is analogous to Reb except with SGS contributions to viscosity
included. Also, we replace the global buoyancy timescale N−1

0 with a local measure of
the buoyancy timescale |∂zb|−1 given by the local buoyancy gradient. This is a more
appropriate measure since buoyancy gradients within the plume differ significantly
from the background linear stratification and are more representative of the regime in
which mixing occurs inside the plume. As with Reb, the mean activity parameter ⟨I⟩
can be interpreted as the ratio of the destabilising effects of turbulent stirring to the
stabilising effects of buoyancy and viscosity. Similarly, I may be treated as the ratio of
the (local) buoyancy timescale (∂b/∂z)−1/2 to the timescale of development of turbulent
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Fig. 3.16 x-z cross sections of the mixing diagnostics ε, χ, I and ∂zb within the plume,
where ϕ > ϕmin at non-dimensional time t = 14. Mixing diagnostics are defined in §3.4.1.
Cross-sections are taken at the plume centreline. Buoyancy contours are shown outside the
plume.

effects (ε/νtot)−1/2 (Ivey et al., 2008). Regions of large I indicate active turbulence
(García-Villalba and Del Álamo, 2011) that is weakly affected by stratification.

3.4.2 Results & discussion

Cross-sections in physical space of the dissipation rates ε and χ, activity parameter
I and local buoyancy gradient ∂zb are shown in figure 3.16. These diagnostics are
only shown in the plume, where ϕ > ϕmin. In the surrounding environment, buoyancy
contours are shown. The mixing diagnostics within the plume structures identified by
classes U, T and A are quantified by histograms separated into each class in figure 3.17.
The colours for each class correspond with those used in §3.3 (e.g. figure 3.15). The
black dashed lines show the histograms for the full plume, i.e. all fluid within the
stratified layer where ϕ > ϕmin. This full histogram is normalised to form a PDF. The
partitioned histograms are scaled so that the sum of the class U, T and A histograms
equals the full plume PDF. These histograms are summarised by volume averages of
the mixing diagnostics within each class, as well as the full plume volume average, in
table 3.2.

The histograms for TKE dissipation in figure 3.17(a) and buoyancy variance
dissipation in figure 3.17(c) are further separated based on where νSGS and κSGS,
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respectively, are non-zero or vanish. This distinction is made since the total viscosity
νtot and total dissipation κtot are bimodal with a peak where the SGS contribution
vanishes (where the simulation effectively switches from LES to direct numerical
simulation, such that νtot and κtot reduce to the molecular values) and a peak where
the SGS contribution is non-zero – see figures 3.17(b) and (d). The separation of
the histograms based on non-zero and zero SGS contribution demonstrates that the
bimodality of the histograms for ε and χ is a consequence of the bimodal total
viscosity and diffusivity alone. The vertical buoyancy gradient histogram is shown on
a logarithmic scale since the most extreme values are rare but remain important for
mixing.

The results show that the mixing statistics are quantitatively different in each
class, suggesting that the mixing regimes differ in each of the three stages of the
plume evolution highlighted in §3.3.8. The cross-sections in figure 3.16 show that TKE
dissipation ε is particularly large in the rising undiluted plume and in some regions of
the plume cap. This is supported by the histograms which show that TKE dissipation
is an order of magnitude larger in class U and T compared to class A. The activity
parameter is also largest in the rising undiluted plume but comparable in the plume
cap and intrusion. The largest values (both positive and negative) of the vertical
buoyancy gradient ∂zb are found in the plume cap (class T) with a clear positive bias.
The relatively tighter spread of the ∂zb distribution in class U in figure 3.17(f) suggests
that smaller vertical buoyancy gradients are more common in the undiluted plume fluid
as compared with the plume cap and intrusion. This explains the increased magnitude
of the activity parameter in class U compared with class T despite similar magnitudes
of TKE dissipation; ε is large in both classes but ∂zb is generally larger in class T and
hence I, proportional to the ratio ε/∂zb, is smaller in class T. The strongest buoyancy
gradients as measured by χ are found in the primary mixing region (class T), where
fluid overturns and subsides fluid in the plume cap. Intense buoyancy gradients are
also found in the rising column of undiluted plume fluid, but χ is more sparse here
than in the plume cap. The strong buoyancy gradients found at the top edge of the
plume cap are a result of the relatively less buoyant plume impinging on the more
buoyant surrounding environmental fluid. Note that the largest values of χ at the
extreme positive tail of the full plume PDF are almost all from class T.

We summarise the mixing regimes described by the mixing diagnostics as follows.
In class U, we find active turbulence with large dissipation of TKE, consistent with
the undiluted plume being unaffected by the surrounding stratified environment due
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Fig. 3.17 (a), (c), (e), (f) show histograms of the mixing diagnostics ε, χ, I and ∂zb defined
in §3.4.1 (black dashed line) decomposed into histograms within class U, T, A (coloured
lines). The histograms within each class are scaled so that their sum is the histogram of the
full plume. In (a) and (c), the histograms are further separated into those with νSGS = 0 and
κ

(b)
SGS = 0 (light colours) and with νSGS and κ

(b)
SGS non-zero (usual colours). (b) and (d) show

histograms of the total viscosity νtot and total buoyancy diffusivity κtot respectively. All
histograms are computed at t = 15. All vertical axes show the scaled histogram frequency.
The scaling is such that the total area is unity for the full plume histograms and the sum
of the partitioned histograms equals the full plume histogram. Similarly in (b) and (d) the
frequency is scaled so that the total area is unity.
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Full plume Class U Class T Class A
Volume % 100 3.64 9.88 86.5

Activity parameter ⟨I⟩ 16.8 81.6 18.8 12.8
Vertical buoyancy gradient ⟨|∂zb|⟩ 1.29 1.41 2.88 1.11

TKE dissipation rate ⟨ε⟩ 0.0466 0.347 0.127 0.0247
Buoyancy variance dissipation rate ⟨χ⟩ 0.0238 0.0595 0.129 0.0103

Instantaneous mixing efficiency η 0.339 0.147 0.504 0.294
Table 3.2 Volume-averaged mixing quantities ε, χ, I, ∂zb and mixing efficiency η defined in
§3.4.1 at t = 15. Averages are computed over the full plume and within class U, T and A.
The percentage of the full plume volume associated with each class is given to indicate the
relative contribution of each class to the full plume average.

to the shielding effect. Since the undiluted plume fluid becomes well-mixed during its
rise through the uniform layer, there are relatively small buoyancy gradients. As a
result, there is relatively little PE dissipation. In class T, rising plume fluid impinges
upon the more buoyant surrounding environmental fluid, generating particularly strong
vertical buoyancy gradients. Horizontal buoyancy gradients are also generated by
overturning. Turbulence advected upwards in class U is carried over into class T but
gradually suppressed by the intense buoyancy gradients present in the plume cap,
thus reducing the activity parameter. As the turbulent motion stirs these buoyancy
gradients, significant PE dissipation occurs and consequently a large mixing efficiency
is achieved, around 50%. Finally in class A, which eventually dominates the volume
of the full plume as the intrusion grows, the interior of the intrusion becomes well-
mixed resulting in weak buoyancy gradients and becomes close to neutrally buoyant
with respect to the surrounding environment. There is some indication of a weak
stratification and layering forming within the intrusion. Secondary mixing processes
between the intrusion and environmental fluid at the bottom of the stratified layer
can introduce larger vertical buoyancy gradients and result in some PE dissipation.
Overall, TKE dissipation is weak as the buoyant forces driving turbulent motion are
weakened by earlier mixing (i.e. TKE has been dissipated in earlier mixing stages).
Whilst both TKE and PE dissipation are weak in class A, they are of similar magnitude
and hence a greater mixing efficiency is achieved compared with class U. This could
be attributed to the continued entrainment of environmental fluid above and below
the intrusion, introducing small-scale buoyancy gradients which are acted upon by the
weak turbulent motion.
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3.5 Conclusions

In this chapter we have analysed a large-eddy simulation of a buoyant pure plume
penetrating into a linearly stably stratified layer. We have outlined the buoyancy-tracer
volume distribution formalism to examine tracer transport via turbulent mixing. Using
this formalism, we developed a method for objectively partitioning buoyancy-tracer
space into three regions based on the net change in volume due to mixing. Each
of the regions identified corresponds with a class of fluid lying in coherent regions
of the plume in physical space. The method distinguishes undiluted plume fluid
(class U) from mixtures of plume and environmental fluid. Mixed fluid is further
partitioned into newly-generated mixtures in the plume cap that are actively mixing
with the environment (class T), and fluid in the radially spreading intrusion that has
already undergone significant mixing (class A). In buoyancy-tracer space, the intrusion
corresponds with an accumulation region (corresponding with class A) where volume
collects and homogenises. Active mixing with the environment in the plume cap moves
volume from the source region, through a transport region (corresponding with class
T), into the accumulation region. The accumulation region represents the majority of
the plume volume at late times. To quantify the mixing regime in each class of fluid,
we use the buoyancy variance dissipation rate, turbulent kinetic energy dissipation
rate, vertical buoyancy gradient and an activity parameter as diagnostic variables in
each sub-volume of the plume. The instantaneous mixing efficiency is also calculated
by treating the buoyancy variance dissipation rate as a proxy for the energy dissipated
in turbulent mixing that actually results in mixing of buoyancy.

Our results demonstrate a three-stage mixing process in quasi-steady state penetra-
tion of a plume into a stably stratified layer. In the first ‘plume mixing’ stage (class
U), turbulence within the undiluted rising plume homogenises the buoyancy-tracer
distribution as fluid rises into the stratified layer. The turbulent motion near the
centreline of the plume is relatively unaffected by the surrounding stratification owing to
a shielding effect from the plume edge and surrounding intrusion. This homogenisation
process sets the range of buoyancy and tracer concentration which is first exposed to
the environment when fluid overturns near the maximum penetration height. The
‘primary mixing’ stage occurs as rising fluid impinges on the more buoyant environment,
establishing intense buoyancy gradients in the plume cap (class T). The mixing of
undiluted plume fluid with the surrounding environment near zmax has a particularly
large mixing efficiency. The maximum penetration height approximately determines the
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buoyancy of the environmental fluid involved in the primary mixing stage and sets the
extent of the buoyancy-tracer convex envelope for the remainder of the mixing process.
As newly-generated mixed fluid joins the intrusion and homogenises with fluid already
in the intrusion (class A), the intensity of turbulence decreases and buoyancy gradients
weaken. Several secondary mixing processes occur in the intrusion. This includes the
entrainment of environmental fluid surrounding the intrusion, and mixing with small
amounts of undiluted plume fluid at the edge of the rising plume that immediately
join the intrusion without entering the plume cap. The volume of environmental fluid
entrained into the intrusion during quasi-steady state dominates the volume into the
plume as a whole at late times, but entrainment in the plume cap is ‘strongest’ in the
sense of the largest fractional rate of increase in volume.

The statistical properties of turbulence are different in each of the three stages. The
undiluted plume core is the most turbulent (as measured by the activity parameter)
with TKE dissipation significantly larger than PE dissipation. In the plume cap, the
intense buoyancy gradients result in large PE dissipation and small TKE dissipation
and hence the entrainment of the surrounding environment achieves a large mixing
efficiency, with around 50% of the total energy dissipated by turbulence resulting
in mixing. As mixed fluid homogenises in the intrusion and further environmental
fluid is entrained, weak buoyancy gradients are continually introduced and eroded by
weak turbulence with low TKE dissipation. The mixing efficiency in the intrusion is
moderately large, though smaller than in the plume cap.

Models of convective penetration which cannot resolve the processes responsible
for mixing and entrainment must parameterise the effects of mixing on the flow. The
markedly different statistics in each class suggest that each stage of mixing should
be parameterised separately. Parameterisations of mixing in convective penetration
could exploit the changing proportion of the full plume volume in each sub-region. For
example, at early times before the formation of an intrusion, the plume is dominated
by undiluted plume fluid in the plume core with intense turbulence but the mixing
efficiency is small. At late times as fluid accumulates in the intrusion, the plume
volume is dominated by the intrusion with weaker buoyancy gradients and turbulence
and a greater mixing efficiency. Therefore the turbulent statistics associated with the
full plume volume must change over time.

The partitioning method presented here, as well as the buoyancy-tracer volume
distribution formalism as a whole, offers a way to analyse mixing in numerical simula-
tions of stratified flows. Physical arguments can be made that restrict the regions of
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buoyancy-tracer space accessible via mixing, and consideration of terms in the volume
distribution budget equation (3.2) highlights the mixing processes that occur and the
resulting tracer transport.
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Appendix 3.A Buoyancy-tracer volume distribution
evolution equation

In §3.3.1 we define the volume distribution W (B,Φ; t) and its governing equation

∂W

∂t
= −∇(B,Φ) · F + S, (3.25)

where F and S represent the flux and boundary source/sink of W respectively. We
derive this evolution equation for the volume distribution W by starting with two
scalar fields b(x, t) and ϕ(x, t) satisfying

∂b

∂t
+ u · ∇b = ḃ, (3.26)

∂ϕ

∂t
+ u · ∇ϕ = ϕ̇, (3.27)

with ∇ · u = 0. Here, we use ḃ and ϕ̇ to represent general forcing terms which are
replaced in §3.3.1 with the non-advective forcing on buoyancy b and tracer concentration
ϕ. Consider a fixed volume V in which (3.26) and (3.27) hold and define

gF =
ˆ

V

F(b, ϕ)dV, (3.28)

where F(b, ϕ) is an arbitrary function of b and ϕ. Then

∂gF

∂t
=
ˆ

V

∂F
∂b

∂b

∂t
+ ∂F
∂ϕ

∂ϕ

∂t
dV

=
ˆ

V

∂F
∂b

(
ḃ− u · ∇b

)
+ ∂F
∂ϕ

(
ϕ̇− u · ∇ϕ

)
dV

=
ˆ

V

∂F
∂b

ḃ+ ∂F
∂ϕ

ϕ̇ dV −
ˆ

V

(u · ∇b) ∂F
∂b

+ (u · ∇ϕ) ∂F
∂ϕ

dV

=
ˆ

V

∂F
∂b

ḃ+ ∂F
∂ϕ

ϕ̇ dV −
ˆ

V

∇ · (uF(b, ϕ)) dV,

(3.29)

since ∇ · u = 0. By the divergence theorem we have

∂gF

∂t
=
ˆ

V

∂F
∂b

ḃ+ ∂F
∂ϕ

ϕ̇ dV +
ˆ

∂V

u · n F(b, ϕ) dS, (3.30)
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where ∂V is the boundary of V and n is the inward normal on ∂V . This forms an
evolution equation for gF . Note that we choose an inward normal so that the final
term is positive when fluid flows into V .

We now consider the specific choice F(b, ϕ;B,Φ) = I(b;B)I(ϕ; Φ) where, for a
field ψ(x, t) defined in V , I(ψ; Ψ) is the indicator function for the subset of V where
ψ(x, t) > Ψ, i.e.

I(ψ; Ψ) =


1 ψ(x, t) > Ψ

0 ψ(x, t) ≤ Ψ.
(3.31)

With this choice of F , the function gF is the volume of fluid in V with b > B and
ϕ > Φ. Furthermore ∂2

∂B∂ΦgF is the ‘volume density’, i.e. ∂2

∂B∂ΦgFδbδϕ is the volume
of fluid in V with B < b(x, t) < B + δb and Φ < ϕ(x, t) < Φ + δϕ. This leads to the
choice of name ‘buoyancy-tracer volume distribution’ for W .

We now simplify the right-hand side terms in (3.30) for the choice F(b, ϕ;B,Φ) =
I(b;B)I(ϕ; Φ). We have

ˆ
V

∂F
∂b

ḃ dV =
ˆ

V

ḃ δ(b(x, t) −B)I(ϕ; Φ) dV

=
ˆ

S(B,Φ)
ḃ

dS
∂b/∂m

= − ∂

∂B

ˆ
V

ḃ I(b;B)I(ϕ; Φ)dV,

(3.32)

where S(B,Φ) is the surface in V where b(x, t) = B and ϕ(x, t) > Φ, and m is the
normal to the surface S(B,Φ). Similarly,

ˆ
V

∂F
∂ϕ

ϕ̇ dV = − ∂

∂Φ

ˆ
V

ϕ̇I(b;B)I(ϕ; Φ) dV. (3.33)

Then the evolution equation (3.30) with the choice F(b, ϕ;B,Φ) = I(b;B)I(ϕ; Φ)
gives the integral form (3.34) of the evolution equation (3.25), which governs the
buoyancy-tracer cumulative volume distribution:

∂

∂t

ˆ
V

I(b;B)I(ϕ; Φ) dV = − ∂

∂B

[ˆ
V

ḃ I(b;B)I(ϕ; Φ) dV
]

− ∂

∂Φ

[ˆ
V

ϕ̇ I(b;B)I(ϕ; Φ) dV
]

+
ˆ

∂V

u · n I(b;B)I(ϕ; Φ) dS.

(3.34)
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The governing equation for the buoyancy-tracer volume distribution W (B,Φ; t) is
obtained by taking ∂2/∂B∂Φ of (3.34) to get

∂

∂t

ˆ
V

δ(b(x, t) −B)δ(ϕ(x, t) − Φ) dV = − ∂

∂B

[ˆ
V

ḃ δ(b(x, t) −B)δ(ϕ(x, t) − Φ) dV
]

− ∂

∂Φ

[ˆ
V

ϕ̇ δ(b(x, t) −B)δ(ϕ(x, t) − Φ) dV
]

+
ˆ

∂V

u · n δ(b(x, t) −B)δ(ϕ(x, t) − Φ) dS.
(3.35)

Since each integral is taken over the volume V , we are left with functions of B,Φ and
t alone. With the definitions

W (B,Φ; t) =
ˆ

V

δ(b(x, t) −B)δ(ϕ(x, t) − Φ) dV, (3.36)

Fb(B,Φ; t) =
ˆ

V

ḃ δ(b(x, t) −B)δ(ϕ(x, t) − Φ) dV, (3.37)

Fϕ(B,Φ; t) =
ˆ

V

ϕ̇ δ(b(x, t) −B)δ(ϕ(x, t) − Φ) dV, (3.38)

S(B,Φ; t) =
ˆ

∂V

u · n δ(b(x, t) −B)δ(ϕ(x, t) − Φ) dS, (3.39)

then (3.35) can be written as

∂W

∂t
= −∇(B,Φ) · F + S, (3.40)

where F = (Fb, Fϕ), which completes the derivation.

Appendix 3.B Potential energy budget

In section 3.4.1 we introduce the perturbation potential energy Ep = 1
2⟨b′2⟩ where b′ is

the departure from the initial linear stratification, i.e. b(x, t) = b′(x, t) + z. This form
of the potential energy may be derived from equation (2.15) of Holliday and Mcintyre
(1981) under the assumption of a constant buoyancy gradient in the initial stratified
environment. The perturbation PE may be treated as a proxy for available potential
energy. To examine the mixing processes in the plume we wish to identify the primary
sink of Ep in order to calculate the mixing efficiency. We must therefore form a budget
equation for the perturbation potential energy Ep.
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We start with the governing equations (2.13) – (2.15) including the SGS terms
and drop the hat notation. Substituting the buoyancy decomposition defined above,
b = z + b′, the buoyancy evolution equation becomes

∂b′

∂t
+ w + u · ∇b′ = 1

RePr∇2b′ + ∇ ·
(
κ

(b)
SGS∇b′

)
+ ∂

∂z
κ

(b)
SGS + fb. (3.41)

Now, multiplying by the buoyancy departure from the initial stratification b′ and
volume averaging over a fixed volume V gives

dEp

dt =
ˆ

∂V

[ 1
RePr + κ

(b)
SGS

]
b′∇b′ · dS − ⟨χ⟩ − ⟨Jb⟩ − ⟨b′∂κ

(b)
SGS
∂z

⟩ (3.42)

where ⟨·⟩ denotes a volume average over V . Note that the term involving fb has been
neglected since the buoyancy forcing vanishes above the forcing region and we will
apply this perturbation PE budget in the stratified layer. The first term on the RHS
represents the diffusive buoyancy flux across the boundary ∂V , which is non-zero
only where the plume penetrates the stratified layer. The second term is the volume
averaged buoyancy variance dissipation rate

⟨χ⟩ =
〈( 1

RePr + κ
(b)
SGS

)
|∇b′|2

〉
, (3.43)

which represents the primary sink of perturbation potential energy. The third term is
the volume averaged buoyancy flux

⟨Jb⟩ = ⟨b′w⟩ (3.44)

which represents an exchange between kinetic and potential energy. The last term
captures the effect of the spatially-varying SGS diffusivity acting on the background
stratification.





Chapter 4

Internal waves generated by a
plume impinging on a stratified
fluid

4.1 Introduction

Internal (gravity) waves propagate horizontally and vertically through stratified fluid,
driven by buoyancy forces. Because they vertically transport horizontal momentum,
they can significantly influence atmospheric winds and, consequently, weather and
climate. The waves can be generated by a variety of processes, including flow over
topography, frontogenesis, and convective storms (Fritts and Nastrom, 1992). Of
the last of these, internal waves can be excited when the top of a convective system
impinges upon the base of the stratosphere. In the absence of mean winds and heating
within the body of the plume, it has been proposed that internal waves can be excited
by the vertically fluctuating motion of the cloud tops (Fritts and Alexander, 2003).
This perspective was drawn into question by laboratory experiments examining internal
wave generation by a vertical plume impinging upon a stratified fluid layer (Ansong
and Sutherland, 2010). After penetrating into the stratified layer the plume became
negatively buoyant, transforming into a fountain. AS10 showed that the frequency
spectrum of internal waves emanating from the plume was narrow and not related to
the broad-banded spectrum associated with fluctuations of the turbulent/non-turbulent
interface of the plume cap (corresponding with the cloud top in Fritts and Alexander
(2003)).
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Fig. 4.1 Schematic showing simulation setup (left) and initial buoyancy profile b(x, t0)
(right) in the stratified (solid) and two-layer (dotted) simulations. The stratification begins
at a height H = 0.2 m above the bottom of the domain (black dashed line). In the two-
layer simulation, there is a buoyancy jump ∆b at z = 0. The plume lies on the centreline
x = y = Lh/2 of the domain of width Lh = 1 m and height Lz = 0.6 m. Sponge layers shaded
in grey. Internal waves indicated by blue wavy lines with wavevector k as shown. The flow
within the plume is indicated by solid black arrows.

Here we perform large-eddy simulations (LES) of a plume impinging upon a stably
stratified fluid layer in order to gain insight into the mechanism for generation of
narrow-banded internal waves from broad-banded convective turbulent motion. Note
that the wavelength of the dominant internal waves that we analyse here is always
much larger than the grid spacing. In all regions of the domain, the LES captures
the energy-containing scales and the smallest resolved motions contain comparatively
little energy. We therefore conclude that using LES to analyse the internal wave
field is justified. Modifications to the numerical model are detailed in section 4.2. In
section 4.3 we describe the flow and compare the generated wavefield observed in a set
of simulations in which the squared buoyancy frequency of the stratified layer varies
over two orders of magnitude. In section 4.4 we focus on a high-resolution simulation
and present analyses which demonstrate that waves originate from within the plume
cap rather than at the turbulent/non-turbulent interface. This simulation is compared
with a two-layer flow in which waves are not present in order to isolate and examine
the influence of waves on the flow.

4.2 Numerical setup

We consider LES with the numerical method and simulation setup described in chapter 2
and shown in figure 4.1 except with minor modifications to allow longer integration
times. In particular, the simulation domain width Lh = 1 m is wider than in earlier
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Sim. N2
0 (s−2) N2

h ×Nz t1 t2 ∆t Re (×107)
N0 1 5122 × 257 2 8 0.02 2.2
N1 10 5122 × 257 2 8 0.02 1.25
N2 100 5122 × 257 2 8 0.02 0.71
HR 0.25 10242 × 513 3 13 0.02 2.66
2L 0 10242 × 513 3 13 0.02 2.66

Table 4.1 Simulation and time window parameters. Nx, Ny, and Nz are the number of grid
cells in each direction.

simulations so that – although the intrusion still reaches the simulation boundary –
there is a sufficiently wide region without edge effects to examine the internal waves.
The wider domain also allows introduction of a sponge layer of width LS = 0.1 m on the
four sides of the horizontally periodic domain to prevent low-frequency internal waves
with a shallow angle from wrapping around the computational domain. To account for
the wider domain, the number of horizontal grid cells here is Nh = 2(Nz −1) (compared
with Nh = Nz − 1 in simulations in chapters 2 and 3). The plume source values and the
domain size are chosen to be similar to those of the laboratory experiments of AS10
so that, in all simulations, the generated plume has source radius r0 = 0.005 m and
integral source buoyancy flux F0 = 4.2×10−7 m4s−3. In the stratified layer, the squared
buoyancy frequency N2

0 is varied from 1 to 100 s−2 in moderate-resolution simulations
and is 0.25 s−2 in a high-resolution simulation. We also include a high-resolution
‘two-layer’ simulation in which N2

0 = 0 s−2 with a buoyancy jump ∆b at z = 0 (see
Talluru et al. (2022) for an experimental study of a similar setup, without a uniform
layer, and Hunt and Debugne (2016) for an analytic study). The jump ∆b = 1

2b0(zss)
is chosen to be half the buoyancy of the initial stratification at the quasi-steady state
height zss in the high-resolution simulation with N2

0 = 0.25 s−2, such that the plume
penetrates to a similar maximum and quasi-steady state height in both the stratified
and two-layer simulations. Relevant simulation parameters are summarised in table 4.1.

All simulations are first run until the plume front reaches the base of the stratified
layer, which we define to occur at time t = 0. Before beginning our analyses, the
wave field is allowed to develop until time t1Tb, where Tb = 2π/N0 is the buoyancy
period. We then collect data at a fine temporal resolution ∆tTb until time t2Tb. Values
of the non-dimensional quantities t1, t2 and ∆t for various simulations are listed
in table 4.1. Unless otherwise stated, analyses are performed on a spatial window
excluding the sponge layers and focused on the stratified layer: LS ≤ x, y ≤ Lh − LS
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Fig. 4.2 Instantaneous x-z slices of w′ showing the internal wave field in the stratified layer
in simulations HR, N0, N1 and N2 at t = 5 Tb. Horizontal dotted and dash-dotted lines
indicates the height at which spectra are calculated in figure 4.4. The passive tracer contour
in black indicates the extent of the plume.

and 0 ≤ z ≤ Lz − H − LS. Throughout this chapter, perturbation components are
calculated by subtracting a running mean of the azimuthally averaged field over one
buoyancy period Tb. The plume volume flux is small and the large-scale flow reaches a
quasi-steady state in which the background stratification and flow vary more slowly
than the averaging period, motivating this choice. Practical constraints mean that
azimuthal averages are stored for the buoyancy and velocity components only. Analyses
are therefore restricted to using horizontal slices. Horizontal averages are weighted by
the radial distance from the plume centreline. Finally, note that whilst (2.13)–(2.15)
are stated in non-dimensional form, we state all values in dimensional units henceforth
to avoid confusion when varying N0. For clarity and completeness, figure 4.1 shows
a version of figure 2.1 with dimensional values used in the simulation setup in this
chapter.

4.3 Comparison of plume and wavefield evolution

In each simulation, the plume rises through the uniform layer and penetrates into
the stratified layer after around 3 seconds. The plume overturns at its maximum
penetration height above the bottom of the stratified layer, zmax ∝ F

1/4
0 N

−3/4
0 , once

it becomes relatively less buoyant than its surroundings, before transforming into a
fountain and forming a radially spreading intrusion at the neutral buoyancy height.
The scaling for zmax was introduced in chapter 2 and fits the simulation data with a
proportionality constant 4.4 ± 0.2. A quasi-steady state is reached in which fluid is
continuously supplied by the plume to the stratified layer and spreads as an intrusion
after mixing with the buoyant environment near the plume cap (see section 3.3) with
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Fig. 4.3 Instantaneous horizontal slices of w′ showing concentric rings of the internal wave
field at z = 0.3 m in simulations HR, N0, N1 and N2 at t = 5 Tb.

mean steady-state height zss below zmax. We ensure that this quasi-steady state is
reached before time t1Tb when fine-resolution data collection begins. As noted in
experimental studies, internal waves are not observed during rise to the maximum
penetration height (AS10), instead appearing once plume fluid first overturns.

Figure 4.2 shows instantaneous x-z slices through the plume centreline of the
perturbation vertical velocity w′ for all simulations and figure 4.3 shows horizontal
slices at z = 0.3 m. Snapshots are taken at t = 5Tb, during quasi-steady state. A
contour of the passive tracer field is shown to indicate the extent of the plume. The
internal wave field is evident, with coherent wave beams propagating upwards and
outwards in the ambient fluid above the plume cap. The simulated internal waves
are consistent with results presented in AS10. Figure 4.4(a) shows the time-averaged
vertical energy flux, Fwave =

´
⟨wp⟩ dA, computed from a Fourier–Bessel decomposition

of ⟨w⟩ as detailed in AS10. Our results with N2
0 = 1 (closest to the value used by

AS10) show that Fwave ≈ O(10−7) throughout the stratified layer, consistent with AS10
results. Moreover, the similar wave flux in the (high-resolution) N2

0 = 0.25 simulation
and the (mid-resolution) N2

0 = 1 simulation verifies that wave generation processes are
sufficiently well resolved, i.e. not resolution dependent. The dotted line in figure 4.4(a)
shows the theoretical scaling for Fwave derived by Couston et al. (2018) for waves
generated by Reynolds stresses due to eddies in an (isotropically) turbulent region
below a very strongly stratified layer. Whilst there is poor agreement in the weakly
stratified cases, the N2

0 = 100 case matches the predicted scaling reasonably well in
the far field.

Frequency and horizontal wavenumber spectra are calculated from the (kinetic)
energy density E(kh, ω; z) = 1

2
∑

i|A(u′
i)|2, where A(u′

i)(ω, kh; z) are the 2D fast Fourier
transform (FFT) amplitudes of each perturbation velocity component u′

i at height
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Fig. 4.4 Analyses of simulations HR, N0, N1 and N2 showing (a) time-averaged vertical
energy flux, Fwave, compared with the theoretical prediction of Couston et al. (2018) for
a strongly stratified regime with a stiff interface: Fwave ∼ z−13/8 (black dotted line), (b)
total energy

∑
kh,ω Eδkhδω at z/zmax = 0.25, 1.4 (crosses, circles), (c) horizontal wavenumber

spectrum fkh
and (d) frequency spectrum fω at z/zmax = 1.4. (e) compares the characteristic

wave frequency ωc and the plume forcing frequency ωplume.

z. We apply an energy-corrected Hann window before computing the time FFT.
The frequency spectrum is then fω(ω; z) = ∑

kh
Eδkh and the horizontal wavenumber

spectrum is fkh
(kh; z) = ∑

ω Eδω where δkh and δω are the spacings in spectral space.
Figure 4.4(b) shows the total energy ∑

kh,ω Eδkhδω above (within) the plume, at
z/zmax = 1.4 (0.25), indicated by crosses (circles). The two heights are indicated by the
dotted and dot-dashed lines in figure 4.2. The energy at heights inside the turbulent
plume is approximately two orders of magnitude larger than in the internal wave field
above the plume. The separation in energy scales is similar for N2

0 = 0.25, 1, 10 and
decreases when N2

0 = 100.
Figure 4.4(c) and (d) shows fkh

and fω, respectively, above the plume at z/zmax =
1.4. The characteristic horizontal wavenumber kh,c, calculated as a power-weighted
average from fkh

, scales with N0 as kh,c ∝ N0.5±0.05
0 . Thus the horizontal wavelength of

the wave beams decreases with N0, as is evident in figure 4.2. The frequency spectra
in figure 4.4(d) suggest that the characteristic wave frequency ωc, calculated as a
power-weighted average, remains approximately constant as a fraction of N0 with
0.6 < ωc/N0 < 1. This is consistent with experiments of the same setup by AS10
which found 0.4 < ωc/N0 < 0.9. The characteristic wave frequency is not related to
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Fig. 4.5 Frequency spectrum fω(z) at a range of heights in simulation HR shown (a) at
all heights on a log-log scale, (b) within the plume, and (c) above the plume. Dots indicate
the raw spectrum which is smoothed to give the solid lines. Note the different scale between
(b) and (c). The heights at which spectra are calculated are indicated by dashed coloured
lines in (d), an instantaneous x-z snapshot of w′ at t = 5Tb with the same colour bar as in
figure 4.2. In (a), (b) and (c) the vertical dashed line indicates ω/Ñ = 1.

the plume forcing frequency. This is shown by comparing ωc with the characteristic
frequency ωplume of vertical fluctuations of the plume height around the quasi-steady
state height zss (not shown). This comparison is shown in figure 4.4(e) and is consistent
with AS10, showing no clear relation between the approximately fixed ωc/N0 and the
varying ωplume. The question therefore remains: what determines the wave frequency
spectrum?

4.4 Analyses

We now focus on analyses of the high-resolution simulation with N2
0 = 0.25 s−2, for

which the plume cap reaches a steady state height of zss ≃ 0.18 m.

4.4.1 Spectral analysis

Figure 4.5 shows the frequency spectrum fω at a range of heights within and above
the plume. The raw spectrum is shown as coloured dots and smoothed in frequency
space to give the coloured lines. The frequency axis is normalised by the time and
horizontally averaged stratification strength Ñ(z), where Ñ(z) = N0 sufficiently far
above the plume (see § 4.4.2). There is a sharp increase in the stratification strength
at the plume cap where intense buoyancy gradients are established between the plume
and the more buoyant environment (see chapter 3) whilst the stratification is weaker
deep inside the plume. Internal waves can propagate locally where 0 < ω/Ñ(z) < 1.
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Fig. 4.6 (a) Horizontal wavenumber spectrum fkh
(kh, z) at a range of heights in simulation

HR, compared with an isotropic and axisymmetric turbulence scaling, k
−5/3
h and k−3

h , shown
as dashed and dot-dashed black lines, respectively. Line colours as in figure 4.5. (b), (c)
Energy spectrum E at z/zmax = 0.25, 1.4. The black dashed line indicates ω/Ñ(z) = 1.

Within the plume (z ≤ 0.18 m, figure 4.5(b)), the frequency spectrum fω(z) is broad
and decays with increasing frequency, as expected for turbulent flow. Above the plume
(figure 4.5(c)), the spectrum is narrow and peaks around 0.7 ≤ ω/Ñ ≤ 1. This is
consistent with the spectra in figure 4.4(b) and results in AS10. In figure 4.5(b) there
is evidence of the spectrum forming a peak at frequencies close to, but larger than,
Ñ(z) at heights z = 0.12, 0.16 m in the plume cap.

Figure 4.6(a) shows the wavenumber spectrum fkh
(kh, z) at a range of heights. The

dashed line shows an isotropic turbulence spectrum fkh
∼ k

−5/3
h and the dot-dashed

line shows a 2D (axisymmetric) turbulence spectrum fkh
∼ k−3

h . The axisymmetric
scaling most closely matches the observed spectra within the plume, consistent with
DNS studies of plumes in a uniform environment, e.g. Van Reeuwijk et al. (2016)
whose results are demonstrated in figure 2.11 in chapter 2. Figure 4.6(b) and (c) show
the energy (density) spectrum E at z/zmax = 0.25 and 1.4 respectively, clearly showing
the broad structure within the plume and restriction to small wavenumbers and a
narrow frequency band above the plume.

4.4.2 Viscous internal wave model

Taylor and Sarkar (2007) (henceforth TS07) present a simple linear model to explain
selection of a dominant range of frequencies in the spectrum of internal waves gener-
ated by a turbulent Ekman layer. The method starts with known wave amplitudes
A(w′)(ω, kh; z0) computed from w′ at some initial height z0. Henceforth we drop the
superscript and assume amplitudes are computed from w′. For § 4.4.2 only, we use
an amplitude-corrected Hann window instead of energy-corrected. The amplitudes
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A∗(ω, kh; z) at an arbitrary height z are calculated based on the expected vertical
propagation speed and viscous decay rate, assuming that the waves satisfy the linear
dispersion relation

ω2 = Ñ2 k2
h

k2
h + k2

z

= Ñ2 k
2
h

|k|2
, (4.1)

and that the background fields are slowly varying in space and time. Here, fol-
lowing TS07, the spectrum P (ω; z) is calculated from amplitudes A as P (ω; z) =√∑

kh
A(ω, kh; z)2. Compared with the original study, we move from a Cartesian to an

axisymmetric wave geometry, implicitly assuming that the curvature in the waves is
small enough to be approximated as plane waves. We account for the energy-conserving
amplitude decrease of a spreading axisymmetric wave beam from a virtual point source
at height zs ≤ z0 with a factor

√
r(z0)/r(z) =

√
(z0 − zs)/(z − zs) where r(z) is the

along-beam distance from the virtual source to the waves at height z (Flynn et al.,
2003). In effect zs is an unknown that may be estimated by choosing the value that
minimises the error between predictions and observations. The predicted amplitude
A∗(ω, kh; z) for a given frequency ω and horizontal wavenumber kh at height z is then

A∗(ω, kh; z)
A(ω, kh; z0)

= Ñ(z0)
Ñ(z)

√
z0 − zs

z − zs

exp
[
−k3

h

ω4

ˆ z

z0

Ñ4(z′)ν̃plume
tot (z′)

(
Ñ2(z′) − ω2

)−1/2
dz′
]
,

(4.2)
where the total viscosity is the sum of the molecular and SGS viscosity, νtot = ν + νSGS,
and ν̃plume

tot is the time and horizontal average of νtot within the plume.
Figure 4.7 compares the full horizontal average with the plume average of the

stratification strength N and total viscosity νtot. Figure 4.7(a) also shows two profiles
of the spatially varying but time-averaged stratification strength Ñ t(x, z), one on the
plume centreline and another at the edge of the plume cap. Points close to the plume
centreline and near the bottom of the stratified layer where (Ñ t)2 < 0 are set to zero
and the profile is smoothed with a running mean. The amplitude prediction (4.2) uses
the full horizontal average Ñ(z) since this more faithfully represents the stratification
in the region away from the centreline where the waves propagate outward – compare
the dotted and dashed green lines in figure 4.7. At heights within the plume, νtot is
between two and three orders of magnitude larger than the molecular viscosity ν, owing
to strong turbulence, and limits to ν in the ambient. For the total viscosity, the plume
average appears to better reflect the turbulent structure noted in Powell et al. (2024),
with stronger/weaker turbulence in the plume cap/intrusion respectively. We therefore
use the plume average ν̃plume

tot in (4.2). The results are qualitatively the same with the
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Fig. 4.7 Vertical profiles of (a) time and horizontal average stratification strength Ñ , time
and horizontal average within the plume Ñplume, time and azimuthal average N , background
stratification N0, and two profiles of the time-average Ñ t(x, z) on the plume centreline
x = 0.5 m and at x = 0.4 m. (b) vertical profiles of time and horizontal average total viscosity
ν̃tot, time and horizontal average within the plume ν̃plume

tot , and molecular viscosity ν.

optimal choice of z0 and zs (see below) when using ν̃tot instead, but the plume average
improves the prediction when z0 lies within the plume.

As an example of applying the TS07 model, figure 4.8(a) shows the observed
spectrum P (ω; z0) at the initial height z0 = 0.16 m. Using this initial spectrum, the
predicted spectrum P ∗(ω; z) at heights z = 0.2 and 0.28 m given a virtual source
at zs = 0.12 m are plotted as dashed lines in figure 4.8(b) and compared with the
corresponding observed spectrum at the two heights, plotted as solid lines. We
compare predictions with observations quantitatively by computing the mean squared
error between them and normalising by the mean of the squared observed spectrum.
This normalised mean-squared-error (NMSE) averaged over predictions at 0.24 m
≤ z ≤ 0.28 m every ∆z = 0.01 m is plotted as a function of initial height, z0, in
figure 4.8 for a range of virtual source heights zs ≤ z0. For all values of zs, the
error between predicted and observed waves well above the plume cap is minimised if
the initial observation height is z0 ≥ 0.16 m. This height is close to, but below, the
plume cap. The lowest error is achieved with virtual source heights well within the
plume, around the height of the intrusion. Even with these optimal parameters, as in
figure 4.8(b), the viscous decay model does not perform as well here as in TS07. In
particular, whilst the model does capture the selection of high frequency waves and
the overall decay in power is well represented, the shape of the spectrum is poorly
predicted, with the decay of intermediate frequencies underestimated. TS07 note
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Fig. 4.8 Application of the viscous internal wave model from TS07 to simulation HR. Line
colours as in figure 4.5. (a) Observed spectrum P (ω; z0) at initial height z0 = 0.16 m. (b)
Comparison of predicted spectrum P ∗(ω; z) (dashed line) and observed spectrum P (ω; z)
(solid line) with virtual source height zs = 0.12 m at z = 0.2 m and 0.28 m. (c) Normalised
mean square error between the predicted and observed spectrum, averaged over 0.24 m
≤ z ≤ 0.28 m, as a function of initial height z0 for a range of virtual source heights zs ≤ z0
(indicated in colour).

that the predicted shape is sensitive to the shape of the initial spectrum. However, a
key observation from (4.2) is that the maximum amplitude for a given height z and
horizontal wavenumber kh, assuming a fixed stratification and viscosity and a flat initial
spectrum, occurs at ω/N0 =

√
4/5 ≈ 0.9 which is close to the peak in the observed

spectra seen in figure 4.5(c) and 4.8(b). Overall, this analysis gives an indication that
waves are generated within the body of the plume, though their spectrum there is not
clearly established.

4.4.3 Dynamic mode decomposition and ray tracing

Motivated by the implication that internal waves are generated within the plume, we
use the dynamic mode decomposition (DMD) method (Schmid, 2010) to extract spatial
structures associated with internal wave frequencies 0 < ω/N0 < 1. We then use ray
tracing to identify coherent wave beams within these structures. Modal decomposition
has previously been used to study internal waves in turbulent flows (Nidhan et al., 2022);
the advantage of DMD in particular is that the modes need not be orthogonal. To apply
DMD we construct a ‘data matrix’ X from snapshots of x-z slices through the plume
centreline, with four observables: the perturbation horizontal velocity u′, buoyancy
b′, vertical velocity w′, and out-of-plane vorticity ζy = ∂zu− ∂xw. The capability to
use multiple observables as input data lends itself to extracting wave modes which
are spatiotemporally coherent across all observables and reduces sensitivity to noise.
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Fig. 4.9 Examples of DMD modes. Here, w′
DMD as defined in (4.3) is plotted. (a) evanescent

mode, (b) turbulent mode, and (c)–(j) internal wave modes. In (c)–(j), green dotted lines
indicate the wave beam angle θ = arccos(ωj/N0) derived from the mode frequency ωj .

The snapshots are restricted to 0.3 m ≤ x ≤ 0.7 m and 0.04 m ≤ z ≤ 0.3 m to avoid
any transient signal from the front of the spreading intrusion. Each column of the
data matrix corresponds to a discrete time tk = k∆T in the range t1 ≤ t/Tb ≤ t2

with t1, t2 as given in table 4.1. A second matrix X′ is constructed by advancing each
column by one time step (and assuming periodicity, so that the last column becomes
the first). The ‘exact DMD’ algorithm computes the eigen-decomposition of the linear
operator A which advances X to X′ ≈ AX. The decomposition yields eigenvalues whose
imaginary part represents the temporal frequency ωj of mode j and real part represents
the growth rate (which is close to zero here). The spatial structure of each observable
i associated with mode j is given by the eigenvectors Φ(i)

j and amplitudes Aj, which
come in complex conjugate pairs for real input data. The spatial structure of w′ (for
example) in mode j with conjugate mode j∗ is

w′
DMD(ωj) = R

[
AjΦw′

j + Aj∗Φw′

j∗

]
, (4.3)

where R denotes the real component.
The spatial structure of the DMD modes determined from simulation HR is sum-

marised in figure 4.9. The modes can be broadly categorised into three types: internal
wave modes with 0 < ωj/N0 < 1, evanescent wave modes with ωj/N0 ≳ 1, and turbulent
modes with ωj/N0 ≫ 1. For the internal wave modes shown, we use the polarisation
relation ω = N0 cos θ to plot dotted lines with the wave beam angle expected from the
mode frequency. The close agreement with the phase lines demonstrates that these
DMD modes successfully capture internal waves matching the mode frequency.
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Fig. 4.10 Ray tracing in DMD modes 6 and 7 with ω/N0 = 0.6, 0.7 from an initial height
z0 = 0.28 m and horizontal starting positions 0.4 m ≤ x0 ≤ 0.6 m shown by coloured dots.
(a), (d): filtered w′

DMD and (b), (e): filtered b′
DMD as described in the text. Colour bar the

same as in figure 4.9. (c), (f): phase perturbation φ − φ as a function of along-beam distance
r − r(zp) from the plume edge at height zp. Lines are coloured according to starting position
and highlighted where 50% of the ray within the plume is coherent. Rays are solid black
(thin dashed) in (a), (b), (d), (e) where coherent (incoherent), being coherent when the phase
perturbation in (c), (f) lies within the solid black lines of those plots.

We now use ray-tracing to examine whether the time-periodic structures determined
by the DMD analysis can be interpreted as internal wave beams originating from within
the plume. Linear ray theory implicitly assumes slowly varying background fields,
meaning turbulent fluctuations are neglected here. We also neglect the mean flow when
propagating rays, which is justified since the group velocity of waves with wavenumber
kh,c and frequency ωc is an order of magnitude larger than the mean velocities in the
plume. To avoid interference from left- and right-moving waves, we first apply a Hilbert
transform (Mercier et al., 2008) and filter each DMD mode into left-moving internal
waves with kh < 0, kz < 0 and right-moving internal waves with kh > 0, kz < 0. The
filtering introduces artefacts close to the horizontal centreline of the mode, which are
reduced by applying a low-pass filter |kh| < 250, but still present. From ray theory,
the path of waves in the x-z plane is given by dx/dz = tan θ in which θ is the angle
formed between lines of constant phase and the vertical (Sutherland, 2010). This angle
is determined implicitly by the polarisation relation ωj = Ñ t(x, z) cos θ, giving θ as
a function of x and z for fixed ωj. Representative profiles of Ñ t(x, z) are shown in
figure 4.7. For a particular DMD mode, we integrate starting from a height z0 = 0.08 m
and at a range of horizontal starting positions 0.4 m ≤ x0 ≤ 0.6 m. Along each ray, we
calculate the phase φ associated with the buoyancy and vertical velocity fields of the
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DMD modes. Under the plane wave assumption b′
DMD = b̂eiφ, w′

DMD = ŵeiφ, with the
amplitudes being related by the polarisation relation b̂ω cosφ = ŵN2

0 sinφ (Sutherland,
2010). Since the phase is constant along an internal wave beam, we identify coherent
sections of each ray where the phase is within π/4 of the mean phase along the ray,
φ: |φ − φ| ≤ π/4. This method implicitly neglects interference from out-of-plane
wave beams. Motivated by the coherent wave beam structure observed in horizontal
cross-sections in figure 4.3, we assume that this interference is weak.

Figure 4.10 shows an example of the ray-tracing results for modes with ωj/N0 ≈
0.5, 0.8. Rays are shown as thick solid black lines where coherent and dashed otherwise.
The mean-subtracted phase along each ray is shown by coloured lines in figure 4.10(c)
and (f). It is expected that there is some noise in the phase, especially where Ñ t(x, z)
is noisy near the plume boundary. The artefacts introduced by filtering the waves,
as well as the imperfect nature of the modal decomposition, also contributes noise.
Nonetheless there are several rays in each mode along which the phase is approximately
constant. This demonstrates that internal waves apparent in the region above the
plume can be traced to a source within the plume.

4.5 Comparison with a two-layer flow

In this section we compare the high-resolution stratified simulation HR with the
high-resolution two layer simulation 2L.

4.5.1 Two-layer flow structure

The two-layer and stratified flows are structurally similar but the upper uniform layer
does not permit propagation of internal waves in the environmental fluid surrounding
the plume in the two-layer case. We compare the two flows to asses the influence of
internal waves on the flow spectra. Figure 4.11 shows the turbulent vertical velocity w′

in both simulations. In the two-layer flow, the plume is less buoyant than the upper
uniform layer and (by design) penetrates to a similar zmax and zss as in the stratified
flow due to its excess momentum at penetration. Mixtures of plume and environmental
fluid in the intrusion are more buoyant than the lower layer but less buoyant than the
upper layer, so the intrusion spreads along the interface at z = 0. It is clear from the
figure that no internal waves propagate through the stratified environment. However,
there is a spatially oscillating signal in a thin layer immediately surrounding the plume
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Fig. 4.11 Turbulent vertical velocity w′ at time t = 5Tb in simulation HR (left) and 2L
(right).

cap which can likely be attributed to evanescent modes. In the remainder of the upper
layer, the turbulent vertical velocity is significantly weaker in simulation 2L compared
with simulation HR and no wave signal is apparent at all above z = 0.2 m.

Figure 4.12 shows profiles of the stratification strength and total viscosity as in
figure 4.7 but for simulation 2L. Unlike simulation HR, where fluid within the plume
was more weakly stratified than the environment other than in a thin layer at the top
of the plume, here the stratification within the plume is stronger than the surrounding
(uniform) environment at all heights. The time averaged profile Ñ t at x = 0.4, as
well as the time and horizontal average Ñ and time and azimuthal average N , shows
a weak stratification in the ambient fluid above the intrusion which vanishes above
z = 0.2 m. There is a peak in the stratification strength at the top of the plume as in
the stratified case. However, the structure of the total viscosity profile differs between
simulation HR and 2L; in the two-layer case there is no sharp peak in the total viscosity
at the top of the plume cap. Instead, the profile is flatter and the total viscosity
throughout 0.05 ≤ z ≤ 0.15 is similar to that found in the plume cap in the stratified
case. Together this suggests that, whilst sharp buoyancy gradients form at the top of
the plume in the two-layer case, the most vigorous turbulence is not confined to a thin
layer at the interface between the plume cap and environment as in the stratified case.

4.5.2 Spectral analysis

Here we repeat the spectral analysis shown in § 4.4. Figure 4.13 shows frequency
spectra at various heights in the domain within and above the plume, which can be
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Fig. 4.12 Vertical profiles of (a) stratification strength and (b) total viscosity as in figure 4.7
but for simulation 2L.

compared with figure 4.5. Figure 4.14 shows the wavenumber and energy spectra which
can be compared with figure 4.6. Although N0 = 0 in simulation 2L, in figure 4.13
and 4.14 we normalise the frequency axis by N0 = 0.5 s−1 to aid comparison with the
relevant figures for simulation HR. In the frequency spectra, the power is similar at
heights within the plume but an order of magnitude smaller above the plume (note
the exponent shown above the plot). In simulation HR, within the plume, the spectral
power increased with height up to the intrusion and then decreased (see figure 4.5(a)).
In the two-layer case the spectral power also peaks at the height of the intrusion which
now lies at z = 0. Above the plume, the spectra peak at ω = 0 and rapidly decay
with increasing frequency. The wave signal identified in figure 4.11 in a thin layer
surrounding the plume cap corresponds with the peak in the spectrum at z = 0.2 m
with ω ≈ 0.25. This frequency is close to but slightly smaller than the buoyancy
frequency within the plume in simulation 2L. As the stratification decreases with
height, these waves become evanescent above the plume and hence their amplitude
decays exponentially. Thus the peak in the frequency spectrum is less pronounced at
z = 0.24 m and absent at z = 0.28 m.

Within the plume, the wavenumber spectrum in simulation 2L follows the same
axisymmetric scaling fkh

∼ k−3
h observed in simulation HR. It is perhaps surprising

that the axisymmetric turbulence identified in the uniform layer in chapter 2 retains
this spectrum in the upper layer (both uniform and stratified) since the flow is more
complex and subject to increased shear as rising plume fluid overturns. Above the
plume the spectral power is much lower in simulation 2L compared with HR, as seen in
the frequency spectra, and drops off at smaller wavenumbers. Comparing the relative
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Fig. 4.13 Frequency spectra (a) at all heights, (b) within the plume and (c) above the plume
and (d) w′ at t = 5Tb with the heights marked by coloured dashed lines as in figure 4.5 but
for simulation 2L. The frequency axis is normalised by N0 = 0.5 to aid comparison with
simulation HR.

Fig. 4.14 (a) Horizontal wavenumber spectrum, (b) and (c) energy spectrum within and
above the plume, as in figure 4.6 but for simulation 2L. Frequencies normalised by N0 = 0.5
to aid comparison with simulation HR.

decrease in spectral power between the two-layer and stratified flows clearly illustrates
the impact of internal waves propagating energy from the plume into the ambient
fluid. In the stratified case, spectral power is around two orders of magnitude smaller
in the waves above the plume compared with the turbulence within the plume. In
the two-layer case, spectral power is around four orders of magnitude smaller in the
absence of internal waves carrying energy into the environment. The same observations
are apparent in the energy spectra; above the plume – in figure 4.14(c) – power is
confined to smaller wavenumbers than in simulation HR and smaller frequencies. The
energy spectra within the plume – compare figure 4.14(b) and figure 4.6(b) – appear
largely similar.
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4.6 Discussion and conclusions

Inspired by the laboratory experiments of AS10, we have performed large-eddy simula-
tions of a buoyant plume penetrating into a stably stratified layer that then transforms
into a fountain and excites internal waves that propagate horizontally and vertically
away from the plume cap. In all simulations the plume source conditions were identical
with the plume encountering the base of the stratified layer 0.2 m above the bottom of
the domain. Across a range of different simulations the strength of the stratification,
N2

0 , varied over two orders of magnitude from 0.25 to 100 s−2.
Although the depth of penetration of the plume into the stratified layer decreases

significantly with increasing N2
0 , the frequency spectrum above the fountain was found

to be narrow-banded with energy concentrated in the range 0.6 < ω/N0 < 1 and a peak
frequency at a near constant fraction of N0 around ω/N0 = 0.9. We applied a viscous
internal wave model, introduced by Taylor and Sarkar (2007), to help understand the
origin of this narrow spectrum, concluding that the model can sufficiently capture
the power decay and frequency selection of the far-field internal wave spectrum when
initialised from a spectrum taken near the top of the fountain z0 = 0.36 m and assuming
a virtual source height zs = 0.32 m within the fountain, near the intrusion height. Using
Dynamic Mode Decomposition, we were able to extract flow structures associated with
internal wave frequencies and used ray-tracing to demonstrate that internal wave beams
can be traced from inside the fountain. This method is subject to significant noise in
the phase reconstruction owing to filtering of the wave modes; superior methods of
identifying a wave signature in the turbulent flow within the plume may exist. Whilst
our analyses do not elucidate the wave generation mechanism, the results imply waves
are generated within the fountain and not at the turbulent/non-turbulent interface
between the plume cap and ambient fluid.

A simulation with a uniform instead of stratified upper layer was run to provide
comparison between two structurally similar flows, one with internal waves present in
the ambient fluid and one without, with the aim of identifying differences in the flow
spectra. The buoyancy jump between the bottom and top uniform layer was chosen
so that the plume penetrates to a similar maximum and quasi-steady state height.
Comparison of the energy spectra at heights within and above the plume showed that,
in the absence of waves in the two-layer case, spectral power is two orders of magnitude
smaller above the plume compared to within, drops off at smaller wavenumbers than
in the stratified case, and is confined to very low frequencies. There was evidence for
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evanescent waves in a thin layer surrounding the plume cap where the ambient fluid
becomes weakly stratified. Whilst this analysis did not elucidate the wave generation
mechanism, the evanescent wave modes surrounding the plume cap were found to
correspond with frequencies close to but smaller than the buoyancy frequency inside
the plume. Thus, whilst waves cannot propagate in the ambient, their generation
and propagation within the plume in the two-layer case appears consistent with the
stratified case.

Other numerical studies of convection interacting with a stratified layer have
likewise shown the excitation of internal waves with their source originating within the
convective region (Couston et al., 2018; Lecoanet et al., 2015; Lecoanet and Quataert,
2013; Pinçon et al., 2016). However, in those studies convective cells scoured the
underside of a strongly stratified layer having buoyancy frequency far exceeding the
characteristic convective frequency. In this ‘scouring’ regime, multiple convective plumes
impinged upon and perturbed the interface between the turbulent lower layer and the
stratified upper layer but did not penetrate into the upper layer. The convection excited
horizontally long, hydrostatic waves with a relatively wide but low frequency spectrum.
The separation of spatial and temporal scales between the convective and stratified
regions allowed them reasonably to adapt Lighthill’s theory for the generation of sound
waves by turbulence (Lighthill, 1952) to the problem of internal waves generated by
convection. Thus they showed that internal waves were excited by Reynolds stresses
within the convecting region with a spectrum that decayed rapidly with increasing
frequency. By contrast, our study focuses on a ‘penetrative’ regime with internal
waves generated by spatially localised penetrative convection, in which the frequencies
associated with turbulence in the plume cap overlap with the observed frequencies
of generated non-hydrostatic internal waves. The lack of spatial and temporal scale
separation in our problem means that Lighthill theory cannot be applied, nor could
it explain the observed narrow frequency band at which waves are excited. Indeed,
comparison of energy spectra in figure 4.6 with those shown in Couston et al. (2018)
clearly shows different structures in spectral space. However, our simulation with
N2

0 = 100 appears to mark a transition between the penetrative convection regime and
the scouring regime: the energy scale separation between the turbulent plume and waves
is much smaller (figure 4.4(b)) and the vertical energy flux in figure 4.4(a) more closely
matches the theoretical scaling derived by Couston et al. (2018) compared with weaker
N0. This trend continues in simulations with N2

0 = 1000, not shown here, though the
nature of the transition between the penetrative and scouring regimes remains unclear.
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Whatever the strength of the stratification, internal waves are generated within the
turbulent region, though we argue the excitation mechanism differs for penetrative
convection.



Chapter 5

Minimal model of moist effects in
convective hydration of the TTL

5.1 Introduction

In chapters 5 and 6 we focus our attention directly on convective hydration of the
TTL. The aim is to establish a parameterisation of microphysical processes that are
thought to be relevant to the irreversible transport of water vapour into the TTL
via penetrative convection. In particular, we seek a minimal moisture model which
retains only the most essential processes, to aid interpretation and understanding of the
mechanisms that contribute to moisture transport and the interaction between them.
The key difference between earlier simulations and the ‘moist’ simulations presented
henceforth is the temperature-dependent nature of the tracer concentration(s) present
in the flow. As in earlier chapters, the moist tracers are passive in the sense that they
do not affect dynamics in the flow, but the evolution of the tracers now depends on
temperature. Although the moist tracers are no longer ‘tracers’ in the typical sense,
we continue to use this term for consistency with earlier chapters.

To formulate our minimal model, in § 5.2 we first discuss in detail the mechanisms
that lead to hydration of the TTL by overshooting convection and identify the essential
processes as condensation, sublimation, and sedimentation. We then explore how
these processes are modelled in comprehensive and simplified microphysical schemes.
The objective is to determine (a) the simplest functional forms that represent each
process and (b) a representation of temperature that is consistent with the Boussinesq
assumption implicit in our numerical scheme. In § 5.3 we describe our minimal
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moisture model and validate its behaviour in § 5.4. As part of this validation, we
define dimensionless ‘regime numbers’ that quantify the importance of each process in
a given simulation. Finally in § 5.5 we introduce a moist variation of the buoyancy-
tracer volume distribution formalism introduced in chapter 3. In chapter 6, we use our
idealised model of convective hydration to explore the interaction between microphysics,
convective intensity, mixing, and large-scale vertical shear in convective hydration of a
stratified layer.

5.2 Literature review

5.2.1 Convective hydration of the TTL

Recent modelling studies in combination with in-situ and remote observations have
progressed our understanding of the mechanisms that lead to vertical transport of water
vapour into the TTL and ultimately the tropical lower stratosphere (TLS). Dauhut et al.
(2018) studied numerical simulations of “Hector the convector”, a large thunderstorm
complex that forms frequently in austral summer near Darwin, Australia. Over their
10 hour simulation, 1500 overshoots were identified, of which around 20 penetrate
deep into the TTL. Their study focuses on the processes occurring as these overshoots
penetrate and collapse, on the time scale of several minutes. Lee et al. (2019) consider
the evolution of a moist anomaly long after the overshooting convection has subsided;
processes on these longer time scales can strongly modify the amount of water vapour
that ultimately reaches the TLS. Here, we summarise the present understanding of the
hydration mechanism which is also illustrated in figure 5.1.

As convective clouds rise through the troposphere and penetrate into the TTL, air
parcels are adiabatically cooled which reduces the saturation vapour concentration,
thus freeze-drying water during ascent. Excess water vapour condenses into droplets
which freeze to form a variety of frozen hydrometeor species. Together these can be
treated collectively as ‘ice’ condensates (Hassim and Lane, 2010). In an individual
overshoot penetrating deep into the TTL, the ice concentration is typically 100-1000x
larger than the water vapour concentration which is around 10 ppmv (Dauhut et al.,
2018). In particular, overshoots which cross the CPT are significantly colder and more
ice-rich than the surrounding dry (i.e. subsaturated) TTL environment which warms
with height above the CPT. Owing to the large temperature difference, the overshoot
becomes negatively buoyant and collapses, generating shear between the rising updraft
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Fig. 5.1 Schematic illustration of the mechanism for convective hydration of the TTL. Axes
on the left show representative profiles of the environmental temperature T and potential
temperature θ profile in the TTL, as well as the cold-point tropopause (CPT). Panel 1:
penetration of a convective overshoot deep into the TTL, with (a) a strong updraft and
significant ice loading. Shading indicates temperature. Red lines are contours of potential
temperature θ. Panel 2: the overshoot collapses, causing (b) air to subside around the
overshoot, enhancing (c) mixing between cold tropospheric air at the top of the overshoot
and surrounding warm TTL air. Ice sublimates in the warmer air, producing a water vapour
anomaly (indicated by light blue shading). (d) Gravity wave breaking may further promote
mixing and associated vertical displacements can loft water vapour deeper into the TTL.
Panel 3: net transport of water vapour into the TLS occurs due to (e) large-scale uplift, but
can be reduced by (f) the formation and sedimentation of ice.

and subsiding flow surrounding it. Turbulence drives intense mixing between the
overshoot and environment, which may be enhanced by shear within the overshoot.
Large-scale wind shear in the TTL can also promote mixing. The mixing of cold and
ice-rich tropospheric air with warm and dry TTL air leads to the sublimation of ice
and formation of a vapour-rich pocket at the top of the overshoot. As the overshoot
collapses to its level of neutral buoyancy, anomalous concentrations of water vapour
remain at greater heights in the TTL.

The hydration mechanism relies on the entrainment of subsaturated air from the
upper TTL into the overshoot so that sublimated ice can increase the vapour content.
However, if air in the TTL is supersaturated then the overshooting process can result in
dehydration via ‘ice scavenging’ (Hassim and Lane, 2010; Khaykin et al., 2022), where
excess vapour condenses onto convectively lofted ice particles which grow and sediment
out of the TTL. Ice scavenging drives the TTL environment back towards saturation,
producing a net dehydration of the TTL. This tends to occur in overshoots which do
not penetrate far into the TTL; relative humidity is typically low in the upper TTL
and TLS so the rare occasions where deep convection penetrates well above the CPT



124 Minimal model of convective hydration of a stratified layer

almost always result in hydration (Jensen et al., 2020). However, Khaykin et al. (2022)
note a single flight in the StratoClim campaign during the Asian Summer Monsoon
with evidence of supersaturated regions above the CPT that had been dehydrated by
convective penetration events.

Notwithstanding the fact that moistening of the TTL occurs, for overshoots that
cross the CPT but do not reach the TLS, the amount of water vapour that is irreversibly
transported into the TLS strongly depends on processes on longer time scales, from
hours to days, during the quasi-horizontal motion that accompanies slow upwelling
through the TTL. For example, gravity-wave associated temperature perturbations can
temporarily cool anomalously moist regions during transit through the TTL, leading to
the formation of ice which may sediment out of the TTL and reduce the net hydration
of the TLS (e.g. Pan et al. (2019); Tissier and Legras (2016); Wright et al. (2011)).
Larger-scale dynamically induced temperature anomalies can have a similar effect.

Convective overshoots generate gravity waves which propagate outwards and up-
wards, producing remote effects as well as local influence on the overshoot (e.g. Hassim
and Lane (2010); Lee et al. (2019); Sang et al. (2018)). These waves have associated
temperature and vertical velocity perturbations which propagate through the TTL and
become amplified when waves break in the presence of vertical wind shear. Sang et al.
(2018) argued that gravity-wave breaking promotes mixing at the top of the overshoot,
thereby increasing the net hydration of the TTL by entraining larger volumes of warm
stratosphere air which then sublimates greater amounts of ice. Sang et al. (2018)
also suggested that the presence of large-scale vertical shear near the CPT limits the
amplitude of gravity waves and reduces the overall transport as a result. The remote
effects of gravity waves have been invoked as an explanation for the ‘jumping cirrus’
phenomenon where hydration occurs up to 1–3 km above the overshoot (Iwasaki and
Yamaguchi, 2022; Wang, 2003). The mechanism was examined by Hassim and Lane
(2010) using numerical simulations which showed that upward displacement of TTL air
by breaking gravity waves results in ice formation by adiabatic cooling, which is then
mixed into the subsaturated (and warmer) environment of the upper TTL and TLS.
However, it is unclear whether the large air-parcel displacements are solely associated
with gravity wave breaking – which necessitates sufficient vertical wind shear in the
TTL environment – or associated with motion of the overshoot itself (Frey et al., 2015).

The TTL temperature structure plays an important role in determining the hy-
dration potential of an overshoot. A cooler TTL environment limits the amount of
sublimated ice that can remain after convective injection since the saturation vapour
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concentration is lower. The increase of TTL temperatures with height above the CPT
makes the maximum penetration height of a convective overshoot a key factor (Dauhut
et al., 2018). A larger maximum height allows mixing of even warmer air from the
upper TTL into the overshoot, increasing the saturation concentration and allowing
more ice particles to sublimate. This supports an earlier study by Sherwood and
Dessler (2001) in which an idealised convective overshooting scheme coupled to a model
of the large-scale circulation showed particular sensitivity to the distribution of heights
where mixing with air in the TTL occurs.

In an idealised model of convective hydration of the TTL we are primarily concerned
with how much vapour remains in convectively lofted fluid parcels that have mixed
with the TTL environment and therefore warmed and sublimated some of their ice
content. We focus on this transient process of hydrating the immediate surroundings
of convective overshoots rather than the slow ascent occurring afterwards. Whilst
ice may remain in fluid parcels, we implicitly assume that this ice sediments out of
the TTL on longer timescales. We choose not to consider the influence of the TTL
environment, instead opting for a completely subsaturated TTL environment to simplify
interpretation. We therefore focus exclusively on hydration of the TTL and do not
consider the apparently less frequent dehydration events; this allows us to formulate a
simpler model that does not represent supersaturation at all.

To conclude, our model need only represent two moist species, vapour and ice,
and must represent three microphysical processes: condensation of vapour to form ice,
sublimation of ice to form vapour, and sedimentation of ice. The timescale on which
these processes occur will play a role in determining the net hydration of the TTL; for
example, the growth rate of ice determines the size distribution of ice crystals which
itself determines the sedimentation velocity. However, by choosing to represent ice
using a tracer concentration (as with the passive tracer used in earlier chapters) we
neglect any representation of crystal size. We will also choose sedimentation to be
independent of ice concentration, such that the sedimentation velocity is fixed, which
aids interpretation of its effect relative to other processes such as mixing and conversion
between vapour and ice.

5.2.2 Minimal moisture models

Moisture schemes range in complexity from comprehensive models that represent
multiple moist species and use detailed microphysical schemes to describe each species
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(i.e. representing ice number concentration, crystal sizes, etc.), to simplified cloud
models which describe vapour, condensate, and precipitate forms of water and use
bulk parameterisations to represent microphysical processes. Moisture schemes can
be further idealised by considering the limit in which one conversion process is fast
relative to others, for example allowing intermediate forms of moisture between vapour
and precipitate to be neglected. Here, we discuss the model presented by Hernandez-
Duenas et al. (2013) (henceforth HD13) which represents vapour and precipitate
(rain water) only and can be viewed as a limiting case of the more complex cloud
microphysics model presented by Grabowski (1998) (henceforth G98). H13 present
simplified representations of the conversion between vapour and precipitate which are
modified for use in our own moisture scheme. Figure 5.2 summarises the H13 and G98
models along with our minimal moisture model detailed in § 5.3.

The G98 simplified cloud model is designed to be applicable to large-scale tropical
circulations whilst remaining computationally practical for large domain cloud-resolving
models. Their moisture scheme models the mixing ratios of water vapour qv, cloud
water (condensate) qc and rain water (precipitate) qp which sediments via a terminal
velocity VT which depends on temperature and other thermodynamic properties of
rain water. Condensation of vapour to form cloud water occurs via the term Cd and
deposition of vapour onto rain water occurs via the term Dp. Cloud water forms
rain water via autoconversion Ac and accretion Ar. Each of these conversion terms is
represented by a bulk parameterisation derived from detailed microphysical models.

H13 consider the limit where autoconversion of cloud water into rain water is fast,
so that condensed cloud water quickly forms into rain droplets that precipitate. Hence
cloud water is neglected as a moist species in their model. There are then only three
moist processes: condensation of water vapour into rain water Cd, evaporation of rain
water into water vapour Er and precipitation of rain water at a fixed velocity VT .
Unlike the G98 model in which the parameterisations are bulk parameterisations of
detailed cloud microphysics, H13 choose the conversion terms to have the simplest
non-trivial functional forms for condensation and evaporation whilst retaining the
essential features of precipitating convection. Following Majda et al. (2010) the closures
adopted are

Cd = qv − qvs(z)
τc

H(qv − qvs(z)), (5.1)

Er = qvs(z) − qv

τe

qr

q∗
H(qvs(z) − qv), (5.2)
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(a) Grabowski et al., 1998
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(b) Hernandez-Duenas et al., 2013
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Fig. 5.2 Schematic of moisture schemes: (a) comprehensive scheme used by Grabowski
(1998), (b) fast autoconversion limit used by Hernandez-Duenas et al. (2013), (c) minimal
moisture model introduced in §5.3.



128 Minimal model of convective hydration of a stratified layer

where H is the Heaviside step function, qvs(z) is the height-dependent saturation
specific humidity and q∗ is a reference specific humidity. Note the different meaning of
q in the G98 model, representing a mixing ratio, and the H13 model where q is the
specific humidity of each moist species, meaning the ratio of the mass of the moist
species to the mass of the moist air parcel. The difference between the mixing ratio
and specific humidity is typically small and either form is valid in the closures given
above. The form of Cd and Er mean that when the amount of vapour qv exceeds
the saturation specific humidity qvs then qv reduces to qvs on a timescale τc and is
converted to rain water qr on a timescale τe. Conversely when air is subsaturated,
i.e. qv is smaller than qvs, if rain water is present then it is converted into vapour.
The condensation timescale τc is typically assumed to be smaller than the evaporation
timescale τe, i.e. condensation occurs more quickly than evaporation.

The conversion terms between vapour and precipitate (which we will later assume
to be frozen) depend on a saturation value which limits the amount of vapour. H13
use the anelastic approximation which treats pressure and temperature, and hence
qvs, as functions of height only. However, our model will be formulated under the
Boussinesq approximation. We follow the study by Vallis et al. (2019) which presents
a simple extension of the Rayleigh-Bénard convection model with the addition of a
water vapour field that experiences condensation alone. The Boussinesq framework
derived by Vallis et al. (2019) provides a form for qvs which is a valuable starting point
for our own moisture scheme owing to its simplicity. This form ultimately relies on
a representation of temperature that is consistent with the Boussinesq assumption,
which is derived as follows. For an ideal gas, the first law of thermodynamics states

cp
DT
Dt − 1

ρ

Dp
Dt = Q, (5.3)

where Q is the heating (which includes diffusion) and cp is the specific heat capacity
of air. Under the Boussinesq approximation and using the hydrostatic equation, the
second term is approximated by

1
ρ

Dp
Dt ≈ w

ρ0

dp0

dz = −wg. (5.4)

The first law then becomes
Dθ
Dt = Q

cp

, (5.5)
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where the potential temperature θ is

θ = T + g

cp

z, (5.6)

meaning g/cp acts as the dry adiabatic lapse rate for this model. Assuming that
deviations from a neutral profile are small and that ∂zT ≈ −g/cp (i.e. that the
temperature profile is nearly adiabatic) then δρ/ρ0 ≈ −δθ/T0, where δθ = θ− θ0 is the
potential temperature perturbation and θ0 = T0 is a reference potential temperature,
equivalent to the reference absolute temperature T0. For consistency with earlier
chapters, we will focus on temperature and buoyancy as the key thermodynamic
variables, with the knowledge that potential temperature is related to the buoyancy via

b = g

θ0
δθ, (5.7)

and can be derived from the temperature according to (5.6). The temperature T and
buoyancy b are related by

T = T0 + δT = T0 + T0

g
b− g

cp

z. (5.8)

The form for the saturation specific humidity qvs in Vallis et al. (2019) is derived
from an approximation to the ideal gas solution of the Clausius-Clapeyron equation
assuming that the latent heat of condensation L is constant. Assuming small variations
in absolute temperature T , the saturation vapour pressure es is approximated by

es = e0 exp
(

L
RvT 2

0
δT

)
, (5.9)

where δT = T − T0 is the temperature perturbation, Rv is the gas constant for water
vapour and e0 and T0 are constants. The specific humidity q is related to the vapour
pressure e by

q = εm
e

p− e
≈ εm

e

p
, (5.10)

where εm ≈ 0.62 is the ratio of the molar mass of water vapour to dry air and the
approximation p ≫ e, which is valid for Earth’s atmosphere, has been used. To proceed
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further we use the relation between pressure, temperature and potential temperature

p = p0

(
T

θ

)cp/Rd

≈ p0

(
T

θ0

)cp/Rd

, (5.11)

assuming that variations in θ away from θ0 = T0 are small, and where Rd is the gas
constant of dry air. Given variations in T away from T0 are also small then

p = p0 exp
(
cpδT

RdT0

)
, (5.12)

using T0 = θ0. Finally, the saturation specific humidity can be written as

qs = q0 exp (αδT ) , (5.13)

where α is a constant that determines the exponential growth rate of saturation specific
humidity with temperature, defined by

α = L/(RvT
2
0 ) − cp/(RdT0). (5.14)

5.3 Idealised model of moist convection

In this section we give a complete description of the minimal model of moist convection
that we use to explore convective hydration of a stably stratified layer. Our model
resembles the moisture scheme presented by H13 with one further simplification: we use
the same ‘moist conversion’ term to represent both condensation and evaporation, which
we assume to occur on the same timescale τm. The representation of temperature and
the saturation vapour concentration is based on the Boussinesq framework introduced by
Vallis et al. (2019). Whilst the Boussinesq approximation that temperature variations
away from the mean are small does not hold over the depth of the whole domain, in the
shallow regions we focus on (i.e. the overshoot in the stratified layer) the approximation
is valid. We consider a regime representative of the TTL where condensate is frozen
and latent heating is neglected.

5.3.1 Model formulation

In earlier chapters we have quantified the passive tracer carried by the flow using the
(dimensionless) concentration ϕ. Moist species, such as water vapour or ice, can be
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quantified in various ways, for example absolute, relative or specific humidity, partial
pressure, or mixing ratio. The moisture schemes discussed in §5.2.2 use the specific
humidity and mixing ratio to quantify moist species, both of which are dimensionless.
For consistency with earlier chapters, in our own moisture scheme we will continue
to quantify tracers using their (dimensionless) concentration. This treatment – with
ϕv as the vapour concentration and ϕvs as the saturation vapour concentration – is
equivalent to using mixing ratio with an appropriate scaling. The relative humidity is
defined as rh = ϕv/ϕvs.

We consider two moist species: water vapour with concentration ϕv(x, t) and ice
condensate with concentration ϕc(x, t). The forcing is chosen such that only vapour is
carried by the plume initially, with ice produced via condensation only. We assume a
fixed sedimentation velocity ws for ice and assume for simplicity that vapour condenses
into ice and ice sublimates into vapour according to the same conversion term E (but
with opposite signs) on the same timescale τm. We also assume the fast condensation
limit discussed in Vallis et al. (2019), such that τm ≪ τd where τd is the dynamical
timescale (defined explicitly later). Upon reaching saturation, any water vapour
exceeding the saturation vapour concentration ϕvs is rapidly converted into ice and
when subsaturated, ice (if present) sublimates back into water vapour. This means
that supersaturated air is not permitted in our model. Finally, to aid in interpreting
results, we include a fully passive tracer ϕp with the same forcing as ϕv except with no
condensation or sublimation processes. The tracer ϕp is equivalent to the tracer ϕ used
in earlier chapters. In cases with sedimentation (when ϕc does not precisely follow the
flow) this allows consistent definition of ‘plume fluid’ using a fixed contour ϕp ≥ 10−3

as in earlier chapters (cf. Hassim and Lane (2010) where the ‘cloud’ is defined using a
fixed contour of the sum of cloud water and ice). We refer to ϕp as the ‘passive total
water’ since ϕp = ϕv + ϕc in the absence of sedimentation (except for minor variation
due to the SGS diffusivity). The minimal moisture model is illustrated in figure 5.2.

The governing equations for the vapour, ice and passive total water concentration
are

Dϕv

Dt = κ∇2ϕv − E , (5.15)
Dϕc

Dt − ws
∂ϕc

∂z
= κ∇2ϕc + E , (5.16)

Dϕp

Dt = κ∇2ϕp, (5.17)
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respectively, where ws is the constant sedimentation velocity (meaning that ϕc is
conserved) and the moist conversion term E is given by

E = ϕv − ϕvs

τm

H(max{ϕc, ϕv − ϕvs}) , (5.18)

where H is a Heaviside step function. The form of E is chosen such that condensation
occurs when ϕv > ϕvs, converting vapour to ice, and sublimation occurs if ϕv < ϕvs

and ϕc > 0, converting ice to vapour.
In order to represent moist processes in the TTL realistically, all variables and

constants must be converted from geophysical scales to the laboratory scale used in
our simulations. To do this, we choose characteristic time and length scales in each
setting and use these as scaling factors. This is equivalent to first non-dimensionalising
the system and then re-dimensionalising for our chosen scale. For the lengthscale l we
choose the depth of the uniform layer H = 0.2 m which corresponds with the depth of
the troposphere Hatm = 14 km, giving a lengthscale factor Rl = Hatm/H = 7 × 104. For
the timescale we choose the time taken for a convective overshoot to penetrate, collapse
and settle in the TTL, τp. From Dauhut et al. (2018) we estimate τp,atm ≈ 10 min.,
whilst in our simulations τp,sim ≈ 15 s based on the forcing used in earlier chapters which
we continue with here. The time scale factor from simulation to atmospheric scales is
then Rt = τp,atm/τp,sim = 40. Under this scaling, a typical value of the stratification
strength in the TTL N2

atm ≈ 6×10−4 s−2 translates to N2
0 ≈ 0.96 s−2 in our simulations.

These conversions are summarised in table 5.1. Note that choosing a horizontal
lengthscale, such as the plume radius at penetration, may be more appropriate given
its direct influence on transport into the stratified layer. However, it is difficult to
calculate the corresponding scale in the TTL since overshoots vary significantly in
width (Dauhut et al., 2018) and the choice between the radius of the entire overshoot
complex or the central updraft is not clear.

There is no natural choice of temperature scaling in our simulations, so we continue
to use temperature values corresponding to a choice of reference temperature T0 = 300 K.
With the scale factors Rt and Rl, the temperature in our model is

T = T0 + Θb− Γ(z +H), (5.19)

where Θ = T0Rl/(gR2
t ) is the conversion between buoyancy and potential temperature

perturbation, such that δθ = Θb, and Γ = gRl/cp is the ‘dry adiabatic’ lapse rate in
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Quantity Lab scale Geophysical scale Conversion factor
Uniform layer depth H 0.2 m 14 km Rl = 7 × 104

Overshoot timescale τp 15 s 10 min. Rt = 40
Stratification N2

0 0.96 (s−2) 6 × 10−4 (s−2) R−2
t

Table 5.1 Conversion between characteristic quantities in the TTL and our simulations.

our model. This provides a mechanism for (an analogue to) ‘adiabatic cooling’ and
‘adiabatic warming’ in our model, where fluid is cooled (warmed) as it moves upwards
(downwards) which reduces (increases) ϕvs. The saturation vapour concentration is

ϕvs = ϕ0 exp [α(T − T0)] = ϕ0 exp [α (Θb− Γ(z +H))] , (5.20)

where α is a constant defined in (5.14) which depends on other physical constants
whilst ϕ0 is the reference saturation concentration, a free parameter which can be set
along with the plume forcing F (ϕ)

0 to determine how much condensation occurs (see
§5.3.3). Note that by neglecting latent heating, the moist static energy is equivalent
to the buoyancy b. The dry and saturated adiabatic lapse rates are also identical and
no buoyancy or vapour sources or sinks are present in the domain except from in the
forcing region where the plume is generated.

5.3.2 Simulation setup & numerical implementation

The simulation setup is identical to that detailed in chapter 2 except with minor
modifications to the tracer initial conditions, the introduction of vertical shear in the
stratified layer, and an additional factor in the plume forcing terms which switches off
plume forcing at time tlim. The full initial conditions are now

u(x, t0) =


0 −H ≤ z ≤ 0,

λz x̂ 0 ≤ z ≤ Lz −H,
(5.21)

b(x, t0) =


0 −H ≤ z ≤ 0,

N2
0 z 0 ≤ z ≤ Lz −H,

(5.22)

ϕp,v,c(x, t0) = N , (5.23)
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where λ = ∂zu is the vertical shear rate in the stratified layer and N represents random
noise of magnitude 10−8 applied to all tracers. Note that the stratified layer is chosen
to be initially completely dry. The noise is included to handle a numerical instability in
the SGS diffusivity calculation. From (5.22), the initial conditions for the temperature
T are

T (x, t0) =


T0 − Γ(z +H) −H ≤ z ≤ 0,

T0 + (ΘN2
0 − Γ)z − ΓH 0 ≤ z ≤ Lz −H,

(5.24)

Note that with the intention to use this model to explore processes in the TTL, where
temperatures increase with height above the CPT, we are restricted to ΘN2

0 > Γ so
that ∂zT > 0 in the stratified layer. As in previous chapters, the boundary conditions
on the top and bottom boundaries are no-slip ∂zu = ∂zv = 0, no-penetration w = 0
and no-flux ∂zb = ∂zϕ = 0.

The full, non-dimensional governing equations are as previously stated for velocity
u and buoyancy b (equations (2.13) and (2.14)). The tracer evolution equations for
ϕp, ϕv, ϕc include plume forcing for ϕp and ϕv, the moist conversion term for ϕv and ϕc,
and sedimentation of ϕc. We have

Dϕ̂p

Dt = 1
RePr∇2ϕ̂p − ∇ · λϕp + fϕp , (5.25)

Dϕ̂v

Dt = 1
RePr∇2ϕ̂v − ∇ · λϕv − Ê + fϕv , (5.26)

Dϕ̂c

Dt = 1
RePr∇2ϕ̂c − ∇ · λϕc + Ê + ws

∂ϕ̂c

∂z
, (5.27)

where the plume tracer forcing terms fϕp and fϕv are as detailed in §2.2.3 and defined
explicitly in (2.35) except with ϕ replaced by ϕp and ϕv respectively. The plume forcing
terms fϕp and fϕv as well as fw and fb defined in (2.33) and (2.34), respectively, are
multiplied by a factor

ft(t) = 1
2

[
1 − tanh

(
t− tlim
τr

)]
, (5.28)

which ends plume forcing at time t ≈ tlim. The parameter τr = 0.5 s is the relaxation
timescale for this forcing modulation. The SGS tracer fluxes λϕp , λϕv and λϕc are as
defined in (2.19) with ϕ replaced by ϕp, ϕv and ϕc respectively. Finally, Ê is the moist
conversion term with ϕv,c replaced by the filtered variables ϕ̂v,c. To avoid confusion
when varying F0, we drop the non-dimensionalisation in (5.25)–(5.27) henceforth.
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Parameter Definition Meaning Value (if fixed)
T0 (5.8) Reference temperature 300 K
ws (5.16) Sedimentation velocity of ice
τm (5.18) Moist conversion timescale 0.1 s
ϕ0 (5.20) Reference saturation concentration
α (5.14) ϕvs exponential growth rate 0.05 K−1

Θ (5.19) δθ = Θb 1340 K−1 m−1 s2

Γ (5.19) Dry adiabatic lapse rate 684 K m−1

λ (5.21) Vertical shear rate in stratified layer
Lh, Lz Fig 2.1 Domain width & height

F0 (2.27) Source buoyancy flux
F

(ϕ)
0 (2.28) Source passive & vapour tracer flux
N0 (2.26) Stratified layer buoyancy frequency 1.0 s−1

H (2.26) Uniform layer depth 0.2 m
r0 (2.34), (2.35) Source plume radius 0.002 m

tend (2.34), (2.35) Simulation end time
τr (5.28) Limited forcing relaxation timescale 0.5 s
τ (2.34), (2.35) Forcing relaxation timescale 1.0 s

tlim (5.28) Plume forcing end time
Table 5.2 Minimal moisture model parameters and general simulation parameters with
values if fixed in all simulations.

The random noise required for stability of the SGS diffusivity calculation intro-
duces a complication in the numerical implementation. The form of the condensa-
tion/sublimation term in (5.15) and (5.16) means that ϕc and ϕp are modified when
ϕv > ϕvs or when ϕv < ϕvs and ϕc > 0. Given a time step ∆t, from (5.15) the change
in ϕv is approximately

|∆ϕv| ≈ |ϕv − ϕvs|
∆t
τm

, (5.29)

and similarly for ϕc. At the top of the domain, this introduces a numerical instability
since ϕv is non-zero and small due to the imposed noise but ϕvs is extremely large, so
∆ϕv far exceeds the amount of ice available to sublimate unless the time step ∆t is
restricted to being very small. To exclude the possibility that ‘too much’ sublimation
occurs, and to avoid excessive constraints on the time step, we explicitly check when
∆ϕv > ϕc and instead set ∆ϕv = ϕc so that ϕv 7→ ϕv + ϕc and ϕc 7→ 0.
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For consistency with the fast condensation limit of Vallis et al. (2019), we choose
the moist conversion (i.e. phase change) timescale τm to be much smaller than the
dynamical timescale τd. The timescale τd could be defined in various ways; here we
choose the time taken for fluid parcels to rise from penetration to the top of the plume
which scales with N−1

0 (Devenish et al., 2010). This is approximated as the ratio of
the quasi-steady state height of the plume zss and the average vertical velocity on the
plume centreline xp = (Lh/2, Lh/2, 0) at penetration:

τd = zss

w(xp) . (5.30)

We implicitly assume the fast condensation limit in our model, which requires τm/τd ≪ 1.
This requirement is enforced by choosing τm to be sufficiently small. On average, the
simulations presented in this chapter have τm/τd ≈ 0.05. Note this limit is representative
of the tropical atmosphere; condensation and evaporation occur on timescales of a few
seconds whilst the dynamics occur on the timescale of a few minutes (e.g. Hernandez-
Duenas et al. (2013)).

The minimal moisture model introduces a number of simulation parameters which
are summarised in table 5.2. For completeness, we also state simulation parameters
introduced in chapter 2 and give values for parameters which are fixed in all simulations
presented in the remainder of chapter 5 as well as in chapter 6.

5.3.3 Quantifying model regimes

Dimensionless numbers are often used to quantify the importance of one process
relative to another, thus identifying regimes where one process or another is dominant.
For example, in § 1.3, we introduced the Reynolds number and buoyancy-Reynolds
number which characterise the turbulent nature of the flow and the relative importance
of turbulence and stratification. Here, we introduce dimensionless ‘regime numbers’
RH, RS, and RSH, which quantify the importance of phase change, sedimentation,
and large-scale vertical shear, respectively. These regime numbers are fixed in each
simulation and controlled by the sedimentation velocity ws, the reference saturation
concentration ϕ0, the vertical shear rate λ and the source buoyancy and tracer fluxes
F0 and F

(ϕ)
0 .

As described in § 5.3, our minimal moisture model introduces two new moist
processes into the simulations: moist conversion between vapour and ice (condensa-
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tion/sublimation) and sedimentation of the ice tracer. There are two aspects of this
process which are important for our focus on hydration of the stratified layer: the
extent to which condensation of vapour into ice occurs as the plume rises through the
uniform layer (which sets the partitioning of moisture into vapour and ice as the plume
penetrates), and how fast this conversion occurs relative to the mixing and dynamics,
which is quantified by the ratio of the moist timescale τm and the dynamical timescale
τd. We quantify the extent to which moist conversion occurs as the plume rises through
the uniform layer using a ‘conserved’ relative humidity

RH =
ϕp(xp)

ϕ0 exp
[
α
(
b(xp) − βH

)] , (5.31)

which is the ratio of the time- and azimuthally-averaged passive tracer ϕp and the
saturation vapour concentration ϕvs on the plume centreline at penetration xp =
(Lh/2, Lh/2, 0). The time average is taken over 0 ≤ t ≤ tlim. The dimensionless
number RH can be interpreted as the mean relative humidity on the plume centreline at
penetration assuming moist conversion does not occur. Hence RH determines the extent
to which condensation occurs: when RH ≪ 1 the typical water vapour concentration
at penetration is well below the saturation vapour concentration so little condensation
occurs as the plume rises through the uniform layer and most moisture is in vapour
form at penetration. Conversely, when RH ≫ 1 condensation occurs as the plume rises
through the uniform layer, so the plume is ‘ice-loaded’ at penetration. The regime
number RH is controlled by two parameters: the plume buoyancy and tracer fluxes F0

and F (ϕ)
0 , which modify ϕp, ϕv and b in the plume, and the reference saturation vapour

concentration ϕ0, which varies the environmental saturation profile and thus modifies
the amount of vapour needed to reach saturation. Note that because of excessive Gibbs
ringing when F0 and F (ϕ)

0 are large (see § 2.3.3), we cannot explore regimes where RH

is extremely large. Test simulations showed that RH ≈ 15 is the practical limit with
our numerical setup.

The importance of sedimentation is expressed by a dimensionless number

RS = ws

weddy
, (5.32)

which is the ratio of the sedimentation velocity ws and the mean turbulent vertical
velocity in the plume,

weddy = ⟨w′⟩plume, (5.33)
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Regime RH RS ϕ0 ws

RH ≫ 1 8.54 0 0.2 0
RH ∼ 1 0.89 0 2.0 0
RH ≪ 1 0.10 0 15 0
RS ≫ 1 2.49 6.45 0.5 5 × 10−2

RS ∼ 1 2.09 0.66 0.5 5 × 10−3

RS ≪ 1 2.15 0.01 0.5 5 × 10−5

Table 5.3 Simulation parameters for the regime-exploring simulations presented in § 5.4.
Fixed parameters are N0 = 1, λ = 0, F0 = 8 × 10−7, F

(ϕ)
0 = 1.04 × 10−6, resolution

Nh × Nz = 512 × 513, simulation end time tend = 15 s and plume forcing end time tlim = 10 s.

where ⟨·⟩plume indicates the plume average within the stratified layer and over the
time range 0 ≤ t ≤ tlim, and w′ is the turbulent component of the vertical velocity,
calculated as in chapter 4 by subtracting the running mean of the azimuthally averaged
velocity. Here, the running mean is taken over a time period of 25 turnover times
T{F0,r0} = r

4/3
0 F

−1/3
0 (see § 2.2 for further details), which smooths out eddy fluctuations.

When RS ≫ 1 the turbulent vertical velocity within the plume is significantly weaker
than the sedimentation velocity and we expect that ice falls out of suspension and
therefore does not reach as far into the stratified layer. When RS ≪ 1 the sedimentation
velocity is weak compared with the turbulent eddies in the plume and therefore
sedimentation plays little role in the dynamics.

Finally, the strength of the vertical shear in the horizontal velocity in the environ-
ment, relative to plume velocities, is quantified by the dimensionless number

RSH = τd

λ−1 (5.34)

which is the ratio of the dynamical timescale τd and the shear timescale λ−1, where
λ = ∂zu as defined in (5.21). Thus when RSH ≫ 1 the shear timescale is much shorter
than the dynamic timescale so shear effects are strong and the plume cap becomes
significantly distorted by the large-scale horizontal flow in the stratified layer. When
RSH ≪ 1 the shear plays little role in the dynamics.

5.4 Exploring model behaviour

In this section we explore the behaviour of our minimal moisture model in two regimes,
each with one of RH and RS fixed and the other varied by changing ϕ0 and ws
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Fig. 5.3 Snapshots of simulations with varied ϕ0 and ws = 0 at t = 5, 10, 15 s showing
the vapour concentration ϕv and ice concentration ϕc in each panel. These simulations are
representative of regimes with RH ≪ 1, RH ∼ 1 and RH ≫ 1 respectively. Buoyancy contours
are shown in red every 0.02 from b = 0.01 m s−2. The black line indicates the plume contour
ϕp = 10−3.

respectively. First, we vary the reference saturation concentration ϕ0, yielding regimes
with RH ≫ 1, RH ∼ 1 and RH ≪ 1. For this set of simulations the plume forcing is
fixed and there is no sedimentation or shear. Separately, we vary the sedimentation
velocity ws, yielding regimes with RS ≫ 1, RS ∼ 1 and RS ≪ 1, keeping the plume
forcing and ϕ0 fixed and with no shear. All simulations are run to time tend = 15 s and
plume forcing ends at time tlim = 10 s. As previously, the plume is identified by the
contour ϕp = 10−3. Parameters for the simulations presented here are summarised in
table 5.3. The focus here is solely on the behaviour of the model, how this depends
on ϕ0 and ws, and the relation to the hydration mechanism in the TTL; a deeper
discussion of the mechanisms and interactions in convective hydration of a stably
stratified layer is given in chapter 6.

Figure 5.3 shows snapshots of the simulations with varied reference saturation
concentration ϕ0 at various times post-penetration. In each plot, we show the vapour
concentration ϕv and ice concentration ϕc with buoyancy contours shown every 0.02
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Fig. 5.4 Vertical profiles of the time- and azimuthally-averaged tracer concentrations
ϕp, ϕv, ϕc and saturation vapour concentration ϕvs on the plume centreline, averaged over
0 ≤ t ≤ tlim. Only the reference saturation concentration ϕ0 is varied between simulations.
The gray horizontal line indicates the ‘cold point’ z = 0 where the environmental temperature
is minimised.

from b = 0.01 m s−2 – note that with N0 = 1 s−1, buoyancy and height are (numerically)
equivalent in the stratified environment. Although plume forcing ends at time tlim = 10 s,
plume fluid continues to rise through the uniform layer up to the end of the simulation.
Figure 5.3 demonstrates how RH relates to the partitioning of moisture into vapour
and ice: when RH ≪ 1 the vapour concentration remains well below saturation at
penetration and hence we find very little ice in the stratified layer. Some ice is produced
at the very top of the plume at t = 15 s as plume fluid is adiabatically cooled during its
rise to zmax. Conversely, when RH ≫ 1, relatively little vapour reaches the stratified
layer and the plume is ice-loaded, with large concentrations of ice present. In the
intermediate regime, RH ∼ 1, some but not all of the vapour has condensed so the
plume carries moderate concentrations of both vapour and ice into the stratified
layer. This effect is also seen using vertical profiles of the azimuthally averaged tracer
concentrations ϕp, ϕv and ϕc on the plume centreline r = 0, as shown in figure 5.4.
As noted earlier, without sedimentation then ϕp = ϕv + ϕc. In the RH ≪ 1 case, the
vapour concentration never reaches saturation so ϕp ≈ ϕv. When ϕ0 is reduced so that
RH ≳ 1, the plume reaches saturation lower in the uniform layer.

The RH ≫ 1 simulation in figure 5.3(c), (f), (i) and figure 5.4(c) is representative
of the TTL regime; plume fluid is freeze-dried as it rises through the uniform layer and
penetrates the stratified layer carrying large amounts of ice. As temperature increases
in the stratified layer, the saturation vapour concentration increases exponentially with
height. Thus larger concentrations of vapour can exist at the top of the plume where
plume and environmental fluid mix, so some of the ice content is sublimated to produce



5.4 Exploring model behaviour 141

Fig. 5.5 Snapshots of simulations with varied ws at t = 5, 10, 15 s showing vapour ϕv and ice
ϕc in each panel. These simulations are representative of regimes with RS ≪ 1, RS ∼ 1 and
RS ≫ 1 respectively. Here, RH ≈ 2. Buoyancy contours are shown in red every 0.02 from
b = 0.01 m s−2. The black line indicates the plume contour ϕp = 10−3.

vapour. Note that figure 5.4 shows averaged profiles which do not reflect local changes
in ϕvs from mixing between the plume and the significantly more buoyant surroundings
which could allow more substantial concentrations of vapour to form. In § 5.5 we use
the buoyancy-tracer volume distribution to explore this in more detail.

Figure 5.5 shows snapshots of the simulations with fixed reference saturation
concentration ϕ0 = 0.5 and varied sedimentation velocity ws. For these simulations,
RH ≈ 2 so the RS ≪ 1 case (with essentially no sedimentation) lies between the
RH ∼ 1 and RH ≫ 1 regimes shown in figure 5.3. However, it is qualitatively closest
to the RH ∼ 1 regime with both ice and vapour present in the plume as it penetrates
into the stratified layer, though the ice concentration is much larger than the vapour
concentration within the stratified layer because of continued adiabatic cooling after
penetration. In the RS ≫ 1 regime, it is evident that the sedimentation velocity
dominates the upward plume velocity meaning very little ice reaches the stratified
layer. When ws > 0, ice is ‘decoupled’ from the plume in the sense that we no longer
have ϕp ≈ ϕv + ϕc because ϕc does not precisely follow the flow. This is particularly



142 Minimal model of convective hydration of a stratified layer

Fig. 5.6 x-z cross-sections through the plume centreline of simulations with RS ≪ 1, RS ∼ 1
and RS ≫ 1, showing the ratio of the time and azimuthal average vertical velocity w and the
sedimentation velocity ws.

evident at t = 15 s in the RS ≫ 1 case where ice has fallen out of the plume into the
subsaturated environment and sublimated to form vapour. Thus we find both vapour
and ice outside of the ϕp = 10−3 contour. The intermediate regime RS ∼ 1 appears
similar to the RS ≪ 1 case at t = 5 s, though there is less ice present at the plume
boundary, because the centreline velocity of the plume still exceeds ws in the RS ∼ 1
case (see below). At t = 10 s and particularly at t = 15 s ice is sedimenting out of
the intrusion, where the velocity is predominantly radial and does not counteract the
downward sedimentation velocity.

The competition between the plume flow keeping ice in suspension, and sedimenta-
tion settling ice out of the plume, can be seen by comparing the magnitude of the time-
and azimuthally-averaged vertical velocity w (calculated over 0 ≤ t ≤ tlim) and the
sedimentation velocity, as shown in figure 5.6. In the RS ≫ 1 case, ws is sufficiently
large to dominate both the turbulent vertical velocity and the mean vertical velocity
in most of the plume. However, on the plume centreline, ws and w are of similar
magnitude so ice is still lifted towards the stratified layer. In the intermediate regime
RS ∼ 1 the turbulent vertical velocity and sedimentation velocity are of similar velocity,
so one might expect ice concentration to decrease with height since not all ice is kept
in suspension by turbulent eddies. However, the mean vertical velocity on the plume
centreline far exceeds ws so ice is lifted into the stratified layer. Subsequently, as
plume fluid collapses in the plume cap, the mean vertical velocity felt by fluid parcels
is reduced (and changes sign) so ice begins to fall out of the plume. In summary, we
expect that ice reaches the stratified layer even when RS > 1 owing to the strong
updraft velocity on the plume centreline. However, provided ws is non-negligible then
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we expect ice to fall out of the plume once the upward flow overturns near zmax and
subsides towards the intrusion.

5.5 Moist buoyancy-tracer volume distributions

To explore the combined effect of moist processes and mixing, here we modify the
buoyancy-tracer volume distribution formalism introduced in § 3.3 to account for the
additional moist terms in the governing equations. We then use the formalism to
examine the effect of mixing on the vapour concentration in the regimes with varied
RH and RS. Whilst we do not use the partitioning of the plume defined in chapter 3,
the evolution of the volume distribution for vapour and ice gives a useful picture of
how the hydration mechanism operates and in chapter 6 we use the passive tracer
volume distribution to identify how large-scale vertical shear influences mixing.

The volume distribution for the passive tracer is as stated in § 3.3 except with ϕ

replaced by ϕp. From the vapour and ice tracer governing equations (5.15) and (5.16),
the vapour and ice volume distributions Wv and Wc evolve according to

∂Wv

∂t
= −Sv − ∇ · Fv − ∂Jv

∂ϕv

, (5.35)

∂Wc

∂t
= −Sc − ∇ · Fc − ∂Jc

∂ϕc

− ∂K

∂ϕc

, (5.36)

where the buoyancy-vapour distributions in (5.35) are defined as

Wv(B,Φ; t) =
ˆ

V

δ(b(x, t) −B)δ(ϕv(x, t) − Φ) dV, (5.37)

Sv(B,Φ; t) =
ˆ

∂V

u · n δ(b(x, t) −B)δ(ϕv(x, t) − Φ) dA, (5.38)

Fv(B,Φ; t) =
ˆ

V

(ḃ, ϕ̇) δ(b(x, t) −B)δ(ϕv(x, t) − Φ) dV, (5.39)

where ḃ = κ∇2b − ∇ · λb and ϕ̇v = κ∇2ϕv − ∇ · λϕ represent the effect of diffusive
mixing on b and ϕv. The ice distributions Wc(b, ϕc; t), Sc(b, ϕc; t), and Fc(b, ϕc; t) are
defined as in (5.37)–(5.39) except with ϕv replaced by ϕc. The additional ‘moist’ terms
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in (5.35) and (5.36) are

Jv(B,Φ; t) = −
ˆ

V

[
ϕv − ϕvs

τm

H(max{ϕc, ϕv − ϕvs})
]
δ(b(x, t) −B) δ(ϕv(x, t) − Φ) dV,

(5.40)

Jc(B,Φ; t) =
ˆ

V

[
ϕv − ϕvs

τm

H(max{ϕc, ϕv − ϕvs})
]
δ(b(x, t) −B) δ(ϕc(x, t) − Φ) dV,

(5.41)

K(B,Φ; t) =
ˆ

V

[
ws
∂ϕc

∂z

]
δ(b(x, t) −B) δ(ϕc(x, t) − Φ) dV, (5.42)

which are referred to as the vapour condensation flux, ice sublimation flux, and
sedimentation flux respectively. These terms arise by replacing ϕ̇ in equation 3.3 in
§ 3.3.1 with ϕ̇v = −E and ϕ̇c = E +ws

∂ϕc

∂z
, respectively, and separating the terms. Note

that (5.40)–(5.42) are written as functions of (B,Φ) to aid clarity and for consistency
with definitions given in § 3.3 but henceforth all ‘vapour’ distributions (with a subscript
v) are written as functions of (b, ϕv) and all ‘ice’ distributions (with a subscript c) are
written as functions of (b, ϕc).

In chapter 3, we used the volume distribution to explore the effect of turbulent
mixing on the distribution of tracer in the flow. Recall that Wv represents the
amount of fluid in the plume within the stratified layer with buoyancy and vapour
concentration within a given range. Mixing acts to move volume through (b, ϕv)-space
which is captured by Fv, whilst Jv describes changes in the vapour concentration due
to condensation. The source distribution Sv captures plume fluid entering the stratified
layer. Compared with the approach used in chapter 3, there is the added complexity
of the conversion between vapour and ice, each of which is associated with its own
phase space (b, ϕv) or (b, ϕc) with its own set of distributions. We also have additional
terms Jv, Jc and K which could be interpreted as vectors in (b, ϕv)-space (for Jv) or
(b, ϕc)-space (for Jc and K) with no component in the b direction, representing the fact
that moist conversion and sedimentation acts on the tracer concentration(s) alone, with
no effect on the buoyancy of fluid parcels. The distributions are calculated as described
in § 3.3.3, with the number of buoyancy and tracer bins in the discrete calculation
set as Nb = Nϕ = 256. As before, we use bmin = 0 so that all fluid with non-zero
buoyancy is represented in the distribution, i.e. excluding fluid from the uniform layer.
The minimum vapour, ice and passive tracer concentrations ϕv,min, ϕc,min and ϕp,min

are chosen so that Gibbs ringing artefacts do not appear in the distribution. In some
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Fig. 5.7 Buoyancy-vapour volume distribution Wv in simulations with RH ≪ 1, RH ∼ 1 and
RH ≫ 1 at times t = 5, 10, 15 s. Saturation curves ϕv = ϕ0 exp(α(Θb − Γ(z + H))) with
z = −L (black dotted), z = zn (black dot-dashed), and heights z = 0.01, 0.03, 0.05, 0.07, 0.09 m
(dashed colour lines).

cases, particularly when RH ≫ 1, the minimum saturation concentration can fall below
ϕv,min. However, this issue applies to relatively few fluid parcels in the domain and
does not qualitatively influence our conclusions. In simulations presented here and in
chapter 6 we use ϕv,min = ϕc,min = ϕp,min = 2 × 10−4. Note that, as in chapter 3, we
define the ‘stratified layer’ (where the volume distribution is computed) to be z ≥ −L
where L = F

1/4
0 N

−3/4
0 is the characteristic lengthscale when non-dimensionalising with

F0 and N0.
As discussed in § 5.2, our primary focus is on the distribution of vapour in the

stratified layer post-penetration. We therefore focus on the vapour volume distribution
Wv first. Figure 5.7 shows Wv at t = 5, 10, 15 s in the simulations with RH ≪ 1, RH ∼ 1
and RH ≫ 1 and figure 5.8 shows Wv at the same times in simulations with RS ≪
1, RS ∼ 1 and RS ≫ 1. In each plot, we show ‘saturation curves’ ϕv = ϕvs(b, z) as a
function of b for a range of values of z. Vapour concentrations exceeding the saturation
curve at a given height will condense until ϕv reduces to the saturation curve (with
b unchanged). The black dotted line shows the saturation curve at z = −L where
the source distributions Sv and Sc are calculated and therefore acts as a limit on the
maximum vapour concentrations at penetration. The black dash-dotted line shows the
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Fig. 5.8 Buoyancy-vapour volume distribution Wv in simulations with RS ≪ 1, RS ∼ 1 and
RS ≫ 1 at times t = 5, 10, 15 s. Saturation curves ϕv = ϕ0 exp(α(Θb−Γ(z+H))) with z = −L
(black dotted), z = zn (black dot-dashed), and heights z = 0.01, 0.03, 0.05, 0.07, 0.09 m (dashed
colour lines).

saturation curve at z = zn where the intrusion forms; we expect vapour to accumulate
near this curve at late times. The remaining coloured dashed lines show the saturation
curve at heights z = 0.01, 0.03, 0.05, 0.07, 0.09 m. This aids comparison of the volume
distributions in figure 5.7 and figure 5.8 with cross-sections in physical space shown in
figure 5.3 and figure 5.5 respectively.

Moist processes play essentially no role in the RH ≪ 1 simulation, so the vapour
distribution Wv behaves qualitatively the same as the passive tracer in chapter 3. At
all times, the vapour concentrations on the source line remain well below the saturation
curves except for the extreme end of the source line where some fluid shielded from
the surroundings is adiabatically cooled during rise to zmax, condensing some vapour.
In the RH ∼ 1 case most of the source line remains below the saturation curve at
penetration, so condensation only occurs close to the plume centreline where vapour
concentrations are large enough to exceed the saturation concentration. As fluid rises
into the stratified layer, the saturation curve quickly limits vapour concentrations so
most fluid parcels experience some condensation during rise towards zmax. As fluid
parcels join the intrusion, they are limited by the saturation curves close to z = zn

which limits the region of (b, ϕv) space where fluid accumulates at late times.
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Fig. 5.9 Schematic illustration of convective hydration of the stratified layer in the RH ≫ 1
regime where the plume is ice-loaded at penetration. Left panel shows processes in (b, ϕv)-
space. Right panel shows corresponding effect in physical space with the flow indicated by
solid gray arrows (when carrying vapour) and dashed gray arrows (without vapour). Coloured
arrows in the left panel correspond with coloured regions in the right panel. (a) Plume
fluid on the source line experiences condensation during rise through the uniform layer (blue
arrows). At penetration, vapour concentrations (left, gray region at small b) are limited by
the saturation curve with z = 0 (left, dashed black curve). (b) Ice carried by the plume is
transported to larger buoyancies via mixing with more buoyant environmental fluid near zmax
(left, gray dashed ellipse; right, circular arrows). Warmer mixed fluid permits larger vapour
concentrations. (c) Sublimation of ice (red arrows) produces large vapour concentrations at
large b (gray region at large b) which is aided by adiabatic warming as fluid descends and
joins the intrusion. Fluid accumulates close to the saturation curve with z = zn (dot dashed
black curve).

The evolution of Wv in the RH ≫ 1 simulation is qualitatively different to the
RH ≪ 1 and RH ∼ 1 cases; most fluid parcels undergo condensation during rise through
the uniform layer so the evolution of Wv heavily depends on the evolution of Wc and
subsequent conversion from ice back to vapour. The saturation curve at penetration
significantly restricts vapour concentrations on the source line. As plume fluid mixes
with the environment, ice and vapour is shifted towards larger b where the saturation
concentration ϕvs is (exponentially) larger, allowing ice to sublimate. Thus Wv increases
at large b even without direct transport in (b, ϕv)-space. The abundance of ice in the
RH ≫ 1 regime means that mixtures of plume and environmental fluid quickly reach
saturation. Thus the volume distribution at t = 15 s accumulates near the saturation
curve with z = zn with more substantial volume at larger values of b than found in the
RH ∼ 1 and RH ≪ 1 cases. This process, which is representative of the TTL hydration
mechanism, is illustrated schematically in figure 5.9.
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Fig. 5.10 Ice tracer volume distribution Wc, cumulative source ice and vapour distributions´
Sc dt and

´
Sv dt, sedimentation flux K, sublimation flux Jc, and condensation flux Jv at

t = 10 s in the simulation with RS ∼ 1. In the two rightmost panels showing (b, ϕv) space,
saturation curves are shown as in figure 5.7 and 5.8.

In the simulation with RS ≪ 1 we see similar behaviour to the RH ≫ 1 simulation
but when RS increases, the region of (b, ϕv) space where fluid accumulates is gradually
restricted to smaller b and ϕv because settling of ice out of the plume limits the
effectiveness of mixing with the environment in producing vapour via sublimation.
Instead, vapour concentrations are reduced because of dilution by dry environmental
fluid.

For completeness, figure 5.10 shows the remaining distributions Wc, Jc, Jv, K as well
as the cumulative source distributions for vapour

´
Sv dt and ice

´
Sc dt at a single time

t = 10 s in the RS ∼ 1 regime. As stated earlier, the sedimentation, sublimation and
condensation fluxes are difficult to interpret since they represent a conversion between
two different phase spaces. The ice concentration is not limited by saturation curves so,
when ice is present in the stratified layer, Wc behaves in a similar manner to the passive
tracer volume distribution in the ‘dry’ simulations considered in chapter 3. However,
ice appears only when vapour condenses so the source line tends to be more diffuse
than in the volume distribution for a fully passive tracer because varying amounts of
ice appear depending on the extent to which the vapour concentration exceeds the
saturation concentration. The cumulative source distribution for the ice tracer shows
the distribution of ice that enters the stratified layer, which clearly shows the more
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diffuse shape of the source line for the ice tracer relative to that seen for the vapour
tracer which remains reasonably confined as seen in chapter 3. However, here the
extreme end of the vapour source line is limited by the saturation curve at penetration.
Regions where the condensation flux Jv is positive in (b, ϕv) space show where vapour
is being converted to ice (blue), which appears in (b, ϕc) space where Jc is positive
(red). Similarly, Jv is positive (red) where ice is being sublimated and corresponds with
regions where Jc is negative (blue). This is consistent with the schematic illustration of
the hydration process in figure 5.9 – ice is formed on the source line as the saturation
curve limits vapour concentrations, which is then mixed towards large buoyancy via
mixing with the more buoyant environment, and then sublimated to reach saturation
at larger b where larger vapour concentrations are permitted. Alongside the moist
conversion processes, sedimentation moves ice downwards. This is difficult to interpret
in (b, ϕc) space. Figure 5.10 shows that K is negative at the ‘top’ of the source line (i.e.
where ϕc is larger) since the volume of fluid with these larger concentrations is reduced.
Correspondingly, the volume of fluid with smaller concentrations of ice increases so K
is positive.





Chapter 6

The influence of convective
intensity, turbulent mixing,
sedimentation and vertical shear in
convective hydration of a stratified
layer

6.1 Introduction

In this chapter we use the minimal moisture model formulated in chapter 5, shown
schematically in figure 6.1, to investigate the relative influence of mixing, convective
intensity, microphysics and vertical shear in convective hydration of a stably stratified
layer. Here, the term ‘microphysics’ is used to mean the three moist processes which are
retained in our minimal moisture model: condensation of vapour into ice, sublimation
of ice into vapour, and sedimentation of ice. In § 5.2 we detailed the mechanism for
hydration of the TTL by convective overshoots, which relies on mixing of ice-loaded air
parcels with warmer and drier stratospheric air, resulting in formation of anomalous
vapour concentrations via sublimation of some of the ice content. Thus the ‘hydration
mechanism’ depends on transport of moisture (primarily as ice), turbulent mixing of
that moisture across buoyancy contours, and the microphysics of phase change, i.e.
conversion between moist species. The mechanisms that lead to mixing between moist
tropospheric air and dry stratospheric air have been proposed to include (internal)
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Fig. 6.1 Schematic diagram of the problem setup, showing (a) processes involved in convective
hydration with their controlling parameters and (b) environmental profiles of buoyancy b,
temperature T and saturation vapour concentration ϕvs.

gravity wave breaking, shear instabilities at the cloud edge, and vortices formed by
the gravity wave response to convective penetration. Studies have attempted to
identify the dominant process – i.e. whichever exerts the most control on the resulting
hydration of the TTL – in numerical simulations of individual convective overshoots (or
collections thereof) using complex microphysical models and observed environmental
setups. Whilst realistic and directly comparable with observations, these studies are
each limited to a narrow regime which is not necessarily representative of the breadth
of regimes possible in the TTL and does not uncover how the interaction between
processes may vary.

We address this problem by considering the representative flow in which a buoyant
plume penetrates into a stably stratified layer. We include only processes which
have been identified to play a role in controlling vapour transport and explore the
interplay between these processes in regimes where each process is weak, influential, or
dominant relative to others. These simulations are performed in a setting representative
of the TTL where the plume is ice-loaded at penetration. Our use of a minimal
model is advantageous over previous comprehensive modelling studies using complex
meteorological models that are computationally expensive because our approach allows
more experiments with limited resources. We can therefore explore multiple simulations
which cover the full breadth of regimes.
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The simulations are organised into one control run and three experiments, each
with a single parameter varied relative to the control simulation, determining (1) the
sedimentation strength, (2) plume forcing strength, and (3) large-scale vertical shear,
respectively. We use the regime numbers RH, RS and RSH introduced in § 5.3 to
quantify each regime. To place our results in the context of the literature on hydration
of the TTL, we refer to three studies: Hassim and Lane (2010), henceforth referred to
as H10; Dauhut et al. (2018), henceforth D18; and Sang et al. (2018), henceforth S18.
As in our simulations, these studies consider large-eddy simulations which parameterise
the effects of sub-grid-scale turbulence. Our simulations are performed at the lab
scale (as detailed in § 5.3) which means the scale at which energy is injected into the
system (by the plume) is closer to the scale at which it is dissipated (by turbulence),
so our results are less sensitive to the SGS model used in our LES compared with the
simulations in H10, D18 and S18 with O(100m) grid spacing. Using results presented
in chapter 3, in our simulations energy is injected at a ∼ 10−1 m scale and dissipated at
the Kolmogorov scale ηk ∼ 10−5 m with a resolved grid scale ∼ 10−3 m. In atmospheric
convection (Feist et al., 2019), energy is injected at a ∼ 104 m scale and dissipated
at the Kolmogorov scale ηk ∼ 10−3 m with a resolved grid scale ∼ 102 m. Thus a
larger fraction of the inertial subrange is resolved in the simulations presented in this
thesis compared with those in the literature. In the remainder of § 6.1 we review the
main findings in H10, D18 and S18. In § 6.2 we detail the experimental design and
parameter choices. The control simulation is presented in § 6.3 and compared with our
current understanding of convective hydration of the TTL. The results of the three
experiments are presented in § 6.4–6.6 in the context of the research questions posed
below. We summarise our findings in § 6.7.

In § 6.4 we consider the competition between sedimentation and mixing; sedimen-
tation acts to settle ice out of the plume whilst mixing acts to sublimate ice into
vapour. Mixing may overcome sedimentation by acting quickly enough for plume fluid
to reach saturation before ice is fully removed from the plume, or sedimentation may
be strong enough to heavily modulate the influence of mixing by removing ice quickly.
These two extremes lead to different conclusions on the resulting hydration of the
stratified layer, which can be assessed using semi-quantitative models that predict
vapour concentrations indirectly by using the temperature of fluid parcels. In the former
regime, which we refer to as the ‘slow sedimentation’ regime, we expect that vapour
concentrations are determined by their current temperature since plume fluid remains
close to saturation. In the latter regime, referred to as the ‘fast sedimentation’ regime,
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vapour concentrations are determined by the minimum temperature experienced along
parcel trajectories, which coincides with the minimum vapour concentration. Any
excess moisture is removed by sedimentation. H10 found that mixing is more localised
than the extensive patterns of moistening (or drying, in the case of a supersaturated en-
vironment) in their simulations, leading to the conclusion that microphysical processes
prevail over the effects of small-scale mixing in determining vapour transport. H10
also note that there is little mixing outside the simulated overshoot, meaning mixing
plays a limited role in redistributing water vapour; instead, microphysical control
of ice crystal concentration and size distributions, and thus sedimentation velocity,
determines the net hydration achieved. However, S18 instead found that turbulent
mixing makes a significant contribution to the transport of small ice particles from the
convective cloud top into the TTL environment. Smaller ice particles are less influenced
by sedimentation and therefore mixing has a more influential role in determining net
hydration. Using simulations with varied sedimentation velocity we are able to explore
regimes where sedimentation is fast, slow, and of intermediate strength. With the
fixed sedimentation velocity used in our minimal moisture model, these regimes are
essentially representative of cases in the real atmosphere where the mean size of ice
crystals tends to be large or small relative to the intermediate regime.

In § 6.5 we consider the effect of ‘convective intensity’ by considering simulations
with strengthened plume forcing. Whilst the dynamical evolution of penetration,
collapse and spreading is unchanged when convective intensity is increased (i.e. the
plume is more buoyant), the time evolution of the flow may change as well as the
intensity of mixing between the plume and environment. S18 considered simulations
with convection initiated by a buoyant thermal, i.e. a plume forced for a short time,
with varied initial temperature. It was found that the net water vapour transport
increases with convective intensity whilst the convective ‘lifecycle’, i.e. the timescale
on which overshoots penetrate and collapse, is unchanged. By varying the convective
intensity, we are able to address the conclusion by D18 that the maximum penetration
height is the key prognostic variable in determining water vapour transport since it
determines the largest potential temperature of stratospheric air which is mixed into
the overshoot, as discussed earlier in § 5.2. The stratification strength is fixed in
the simulations presented in this chapter and zmax ∼ F

1/4
0 N

−3/4
0 (see chapter 2) so by

increasing F0 we also increase zmax. Whilst it is clear from chapter 3 that penetration
to a greater zmax allows mixing of plume fluid to much greater buoyancies, the increased
maximum height may result in larger quantities of vapour condensing via adiabatic
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cooling during ascent, thus offering the potential for sedimentation to exert stronger
control on hydration when convective intensity is increased.

Finally, in § 6.6 we consider the influence of large-scale vertical shear on mixing (and
thus hydration) and the vortical and gravity wave response to convective penetration
in the presence of shear. The dynamical evolution of the flow is significantly influenced
by the presence of a mean flow; we consider the effect of these structural changes
in the flow on turbulent mixing in general as well as the effect on hydration of the
stratified layer. The influence of vertical shear was considered in detail by S18 who
found that the net hydration decreases with increasing shear rate, though the vertical
shear is found to have no influence on the strength of overshooting. The reduced vapour
transport is attributed to a reduction in the occurrence of gravity wave breaking, with
a reduction in gravity wave amplitudes. Although small-scale turbulent mixing is found
to strengthen with shear rate, S18 find that the modulation of gravity wave breaking is
more influential. The results of S18 appear to contradict the view that strong vertical
wind shear tends to favour gravity wave breaking (e.g. Lane et al. (2003), and also
noted in H10 and D18). As waves break, their amplitudes increase until non-linear
effects become dominant and turbulence is generated. Internal gravity waves have
been identified as key process in causing intense mixing between the overshoot and
environment because of the production of successive vortices with alternating sign
(Dauhut et al., 2018; Lane, 2008) that may lead to shear instabilities at the cloud edge.
D18 also place importance on strong wind shear inside the overshoot that produces
the strong cross-isentropic transport needed to warm ice-loaded air parcels. As a final
addendum to our investigation of vertical shear, we address part of the study by H10
which identifies the mechanism for the jumping cirrus phenomenon, introduced in
§ 5.2, that results in moistening of the TTL well above the maximum penetration
height. H10 identified large vertical displacements (around 1 km in magnitude) as
the key mechanism for the formation of jumping cirrus, which acts to bring together
and mix moist air lower in the TTL with relatively dry air higher in the TTL. The
resulting moist air reaches saturation as it ascends towards its neutral buoyancy height,
producing cirrus (i.e. clouds of ice). Gravity wave breaking has been invoked as the
primary mechanism responsible for these large vertical displacements but it remains
unclear if wave breaking is essential; large vertical displacements could instead be
associated with collapse of the overshoot or propagating gravity waves and therefore
may be present in regimes where the vertical shear is weak or absent (where critical
layer wave breaking is not possible).
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Simulation Nh Lh tend F0 (×10−6) ws RS λ RSH

(m) (s) (m4s−3) (m s−1) (s−1)
control 512 0.6 35 5 0 0 0 0
weak_sed 512 0.6 35 5 5 × 10−4 0.06 0 0

sed 512 0.6 35 5 5 × 10−3 0.6 0 0
strong_sed 512 0.6 35 5 5 × 10−2 7.2 0 0
control+F 512 0.6 35 20 0 0 0 0

sed+F 512 0.6 35 20 5 × 10−3 0.45 0 0
strong_sed+F 512 0.6 35 20 5 × 10−2 4.0 0 0
weak_shear 1024 0.8 15 5 0 0 0.175 0.30

shear 1024 0.8 15 5 0 0 0.5 0.93
strong_shear 1024 0.8 15 5 0 0 1.2 2.0

Table 6.1 Simulation parameters. The parameters N0 = 1 s−1, F
(ϕ)
0 = 5 × 10−6 m3s−1,

ϕ0 = 0.2, tlim = 10 s, Nz = 513 and Lz = 0.5 m are fixed. The mean attained plume buoyancy
and tracer fluxes are F

(ϕ)
0 = 5.5 × 10−8 m3s−1 and F0 = 5.5 × 10−8 m4s−3 in the control

forcing simulations and F0 = 3.0 × 10−7 m4s−3 and F
(ϕ)
0 = 7.5 × 10−8 m3s−1 in the strong

forcing simulations.

6.2 Experimental design

The simulation setup and numerical method are as described in chapter 2 with specific
alterations for the minimal moisture model as detailed in chapter 5. The simulation
parameters used in the control simulation and three experiments are detailed in table 6.1.
We refer to simulations using the name given in the first column, e.g. the control
simulation is referred to as control. Remaining parameters are as detailed in chapter 5
and given in table 5.2.

Two important choices are made in setting the simulation parameters. First, we re-
strict attention to the model regime RH ≫ 1 since it is representative of the atmospheric
case where convective overshoots penetrate into the TTL carrying significant concen-
trations of ice. This is verified by observational evidence and numerical simulations.
For example, figure 7(d) of D18 shows the solid water (i.e. ice) mixing ratio around
104 ppmv and the vapour mixing ratio around 10 ppmv in an overshoot that results in
a net hydration above the 380 K isentrope, which is used to define stratospheric air.
Translating to the language of our setup, assuming that sedimentation is weak then
ϕp = ϕv + ϕc ≈ 104 at penetration and hence RH ≈ ϕv/ϕp ≈ 103. As discussed in § 5.3,
this is not practically achievable in our simulations but nonetheless illustrates why
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the RH ≫ 1 regime is most relevant. In all simulations we use a reference saturation
concentration ϕ0 = 0.2, yielding an average RH ≈ 12 in simulations with the control
plume forcing value shown in table 6.1. Simulations with the increased plume forcing
yield an average RH ≈ 5: the plume is more buoyant, hence warmer, so can support
larger vapour concentrations. Thus given the same tracer forcing, condensation oc-
curs higher in the uniform layer and the partitioning of total water into vapour and
ice is shifted towards vapour at penetration, reducing RH. The second choice is to
limit plume forcing to a finite time and run simulations long enough to explore the
‘relaxation’ stage of the flow evolution that occurs after plume forcing ceases and the
plume cap has collapsed. During this stage, buoyancy contours relax to their initial
positions and re-establish the stratification of the environment that was disturbed
by the plume. Plumes that are forced for a finite time are essentially thermals, i.e.
transient releases of buoyant fluid. This setup can be considered representative of the
atmospheric problem where the intense updraft that drives a convective overshoot is
eventually cut off by a spreading cold pool at the surface – another justification is the
use of a buoyant thermal to initiate convection in numerical studies such as H10 and
S18. In our simulations, plume forcing ends at time tlim = 10 s, equivalent to O(10 min)
on atmospheric scales. Another motivation to continue simulations long after plume
forcing ends, up to time tend = 35 s, is a clearer distinction between the net hydration
in different cases, especially those with weak sedimentation where the effects are more
clearly seen on long timescales. The longer simulation time means that the intrusion
front reaches close to the edge of the (horizontally periodic) simulation domain. Test
simulations showed that the radial spreading slows significantly after plume forcing
ends at tlim = 10 s, so the continued spreading of the intrusion has a negligible effect
on the flow evolution. Note that simulations with large-scale vertical shear are only
run up to time tend = 15 s so that the plume cannot not wrap around the horizontally
periodic domain and interact with itself during the simulation.

The experiments are set up as follows. Table 6.2 shows the conversion of the
simulation parameters from the lab scale to atmospheric scales, as well as characteristic
dynamical quantities in each simulation: the typical turbulent vertical velocity in the
plume weddy (defined in § 5.3.3), azimuthal average buoyancy and vertical velocity at
penetration on the plume centreline b(r = 0, z = 0) and w(r = 0, z = 0) (averaged over
5 ≤ t ≤ 10 s), maximum penetration height zmax, equilibrium height zn, and dynamical
timescale τd (defined in § 5.3.3).
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Simulation(s) Quantity Lab scale TTL scale
All N2

0 (s−2) 1 6.25 × 10−4

All tlim 10 s 6.7 min
No shear tend 35 s 23.3 min

Shear tend 15 s 10 min
Control forcing

F0 (m4 s−3) 5.5 × 10−8 2.1 × 107

Strong forcing 3.0 × 10−7 1.1 × 108

weak_sed (+F)
ws (m s−1)

5 × 10−4 0.875
sed (+F) 5 × 10−3 8.75

strong_sed (+F) 5 × 10−2 87.5
weak_shear

λ (s−1)
0.175 4.4 × 10−3

shear 0.5 1.3 × 10−2

strong_shear 1.2 3.0 × 10−2

No shear

weddy (m s−1)

7.7 × 10−3 13.5
No shear (+F) 1.1 × 10−2 19.3
weak_shear 7.1 × 10−3 12.4

shear 9.3 × 10−3 16.3
strong_shear 8.3 × 10−3 14.5
Control forcing

w(r = 0, z = 0) (m s−1) 3.8 × 10−2 67
Strong forcing 6.3 × 10−2 110
Control forcing

b(r = 0, z = 0) (m s−2) 6.3 × 10−3 0.28
Strong forcing 1.6 × 10−2 0.70

No shear

zmax

5.2 × 10−2 m 3.6 km
No shear (+F) 8.2 × 10−2 m 5.7 km
weak_shear 5.1 × 10−2 m 3.6 km

shear 5.7 × 10−2 m 4.0 km
strong_shear 5.3 × 10−2 m 3.7 km

No shear

zn

1.0 × 10−2 m 0.7 km
No shear (+F) 1.9 × 10−2 m 1.3 km
weak_shear 8.1 × 10−3 m 0.6 km

shear 1.3 × 10−2 m 0.9 km
strong_shear 1.8 × 10−2 m 1.3 km

No shear

τd (s)

2.10 84
No shear (+F) 1.80 72
weak_shear 1.72 69

shear 1.85 74
strong_shear 1.68 67

Table 6.2 Conversion of simulation parameters from the laboratory scale, as given in table 6.1
and described in the text, to atmospheric scales representative of the TTL. The scale factors
Rt and Rl are derived in § 5.3.1 and given in table 5.1.
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1. Varied sedimentation strength. The sedimentation velocity ws is chosen
to explore the regimes RS ≪ 1, RS ∼ 1 and RS ≫ 1 in weak_sed, sed, and
strong_sed respectively. Recall that RS = ws/weddy is the ratio of the sedimen-
tation velocity and the typical turbulent vertical velocity in the plume, weddy.

Thus when RS ≪ 1, ice is kept suspended in the plume by turbulent eddies,
whilst when RS ≫ 1 sedimentation acts to settle ice out of the plume rapidly. In
simulation weak_sed, ws is chosen to be representative of the atmospheric case:
figure 2 of Grabowski (1998) shows the terminal velocity for rain and snow as
a function of the mixing ratio using the Marshall-Palmer size distribution. For
precipitating frozen water, equivalent to ice in our model, the velocity is on the
order of 1 ms−1 on atmospheric scales which translates to ws = 5 × 10−4 ms−1 in
our model.

2. Varied forcing strength. Simulations control, sed, and strong_sed are
repeated with the source integral buoyancy flux F0 quadrupled relative to the
control simulation. Whilst the prescribed integral source tracer flux is fixed
so that the tracer concentration carried by the plume remains the same, the
measured tracer flux in the uniform layer is slightly larger than in the control
forcing simulations because the vertical velocity is larger – note from § 2.2.3 that
the vertical velocity forcing is controlled by F0 as well as the buoyancy forcing.

3. Varied vertical shear strength. Large-scale vertical shear is introduced in the
stratified layer with shear rate λ varied to give regimes RSH ≪ 1, RSH ∼ 1 and
RSH ≫ 1 in weak_shear, shear, and strong_shear, respectively. Recall that
RSH = τd/λ

−1 is the ratio of the dynamical timescale and the shear timescale.
Thus when RSH ≪ 1 the shear plays little role whilst when RSH ≫ 1 the plume
is significantly deformed. To accommodate the lateral deformation of the plume,
the domain width is increased to Lh = 0.8 m and the horizontal resolution is
doubled to Nh = 1024. Values of the parameter λ are chosen to cover the wide
range of vertical shear rates found in the TTL. The shear rate chosen for the
RSH ≪ 1 case is calculated from the mean shear between 15 and 18 km, 5◦N-S
from 2010 to 2015 using ERA5 reanalysis data, giving λatmos = 4.4 × 10−3 s−1

which translates to λ = 0.175 s−1 at the lab scale. The choice of λ for the RSH ≫ 1
regime is calculated from observations at individual locations over the Indian
Peninsula, which give shear rates around λatmos ≈ 3 × 10−2 s−1 on average during
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summer monsoon months (Liu, 2017; Sunilkumar et al., 2015), which translates
to λ = 1.2 s−1 in our model.

Note that large-scale vertical shear combined with a stable stratification can lead
to shear instability when the bulk Richardson number Ri0 = N2

0/λ
2 ≤ 1/4 (see § 1.3).

The minimum Ri0 is achieved in simulation strong_shear, with Ri0 ≈ 0.8. Hence
all simulations are initially stable, meaning shear instability will not spontaneously
develop. However, internal wave breaking may lead to the generation of turbulence.
To better resolve this process, and in anticipation of enhanced turbulent mixing, in
the shear simulations the grid is stretched so that the vertical grid spacing is reduced
between z = 0 and z = 0.1 m (i.e. the resolution is increased).

6.3 Convective hydration of a stably stratified layer

In this section we examine the control simulation which acts a baseline for the
experiments presented in the following sections. We discuss the evolution of the flow
and introduce quantities used to assess mixing and vapour transport in the stratified
layer.

6.3.1 Evolution of moist tracers and temperature

In the absence of a mean flow in the stratified layer, the evolution of the buoyancy field
and flow proceeds as described in earlier chapters. Three stages of the flow evolution
can be identified: penetration towards the maximum penetration height zmax, collapse
of the plume cap once plume forcing ends, and relaxation at late times. Here, we
discuss the evolution of temperature T (which depends linearly on b and z, see (5.19))
and its effect on the moist tracer concentrations ϕv and ϕc via modification of the
saturation vapour concentration ϕvs(T ). It is also instructive to consider the relative
humidity rh = ϕv/ϕvs – in studies of atmospheric models it is common to use the
‘cloud contour’ rh = 1 to mark the edge of clouds (which are in the form of cirrus in
the TTL). However, we continue to use the ‘plume contour’ ϕp = 10−3 for consistency
with the ‘dry’ analysis in earlier chapters where definition of a cloud contour was not
possible. The plume contour is also useful for the purposes of comparison between
cases with varying sedimentation velocity; ice that sediments outside the plume contour
is considered to be permanently lost from the plume. When sedimentation is weak or
absent, vapour and ice concentrations are guaranteed to be small outside the plume
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contour: ϕv,c ≤ ϕp ≤ 10−3. Note that in the remainder of this chapter we use the terms
‘moist’ and ‘dry’ to refer to the size of the vapour concentration, i.e. if ϕvs is small
then a region may be ‘dry’ in the sense it has a low vapour concentration ϕv but could
carry large amounts of ice.

Figure 6.2 shows the time evolution of the vapour concentration ϕv, ice concentration
ϕc, relative humidity rh, and temperature T in x-z cross-sections through the plume
centreline in simulation control. The strong central updraft lifts the plume to the
maximum penetration height zmax shortly after t = 5 s. As the plume rises it cools
(panel d) which freeze-dries the vapour content, forming a pocket of very cold fluid in
the plume cap which is relatively dry (panel a) and loaded with ice (panel b). During
this penetration stage, plume fluid is saturated whilst the surrounding environment
is completely dry (panel c). At t = 10 s the plume has started to collapse and form
an intrusion. Mixing is evident at the top edge of the plume in panels (e)–(h): the
b = 0.01 m s−2 contour is significantly deformed and lies within the plume contour.
The mixing of cold plume fluid with warm environmental fluid creates a shell of warmer
fluid at the edge of the plume cap (panel h) where ϕv increases (panel e) and ϕc

decreases (panel f) via sublimation. As mixed plume fluid subsides from the plume
cap and joins the intrusion, it is adiabatically warmed (panel l) and continues to
mix with the environment, further increasing ϕv (panel i) and decreasing ϕc (panel j).
Note from panel (g) and (k) that mixtures of plume and environmental fluid remain
saturated owing to the abundance of ice in the RH ≫ 1 regime and the relatively low
saturation concentration near the cold point, z = 0. Although plume forcing ends at
time tlim = 10 s, plume fluid continues to rise through the uniform layer and can still
be seen penetrating past the cold point at t = 15 s in panels (i)–(l). The collapsing
stage of the flow evolution continues through t = 15 s, with strong mixing evident in
the plume cap and intrusion. Gravity waves are evident from the perturbation of the
isentropes above the plume as well as perturbation of the environmental temperature
in panels (l), (p), and (t). At t = 25 s and t = 35 s the plume has reached the relaxation
stage; isopycnals gradually relax and the temperature difference between the plume and
environment reduces – note that plume fluid becomes stratified like the surrounding
environment (panel t). A moist region is evident in panel (m) between the b = 0.01 m
s−2 and b = 0.04 m s−2 contours. Mixed plume fluid remains at saturation (panel s)
and some ice remains in the plume (panel r), whilst some fluid surrounding the plume
is slightly subsaturated and carries some vapour (panel q) but no ice.
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Fig. 6.2 Snapshots of simulation control at t = 5, 10, 15, 25, 35 s showing vapour concentra-
tion ϕv, ice concentration ϕc, relative humidity rh = ϕv/ϕvs and temperature T . The black
outline indicates the plume contour ϕp = 10−3. In each plot, buoyancy contours are shown in
red every 0.02 from b = 0.01 m s−2.
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6.3.2 Quantifying hydration of the stratified layer

To quantify the evolution of moist and passive tracers, we calculate the total amount
of each tracer in the stratified layer at time t. The total amount of vapour is

Tv(t) =
ˆ

z≥−L
ϕv≥ϕv,min

ϕv(x, t) dV =
ˆ
Wv(b, ϕ; t)ϕ dϕ, (6.1)

where we exclude vapour concentrations ϕv ≤ ϕv,min to handle any numerical artefacts,
as with the moist volume distributions presented in § 5.5. The total amount of ice Tc,
and passive tracer Tp, is defined as in (6.1) but with vapour quantities replaced by ice
and passive tracer quantities, respectively. The total amount of vapour that has been
directly transported into the stratified layer by the plume up to time t is

Iv(t) =
ˆ t

0

ˆ
z=−L

ϕv≥ϕv,min

ϕv(x, t)w(x, t) dSdt =
ˆ t

0

ˆ
Sv(b, ϕ; t)ϕ dϕdt, (6.2)

and similarly for other tracers. We use the rate of change of Tv, Tc and Tp to quantify
the flux of each tracer into the stratified layer. It is also instructive to consider the
‘retained fraction’ of each tracer at time t, which is the ratio of the current amount of
tracer and the input amount of tracer, i.e. Tv/Iv for vapour and similarly for other
tracers. In the following analysis we define the ‘total hydration’ as Tv(tend), i.e. the
final amount of tracer in the stratified layer. This is analogous to the ‘net hydration’
often referred to in the atmospheric literature, except we do not use the term ‘net’ since
there is no initial vapour content in the stratified layer. Transport of vapour into the
stratified layer can be separated into direct transport, where vapour is carried by the
plume, and indirect transport, where ice is carried by the plume and later sublimated
into vapour. The ‘excess hydration fraction’ is defined as the final retained fraction
of vapour Tv(tend)/Iv(tend); this quantifies the indirect transport as a fraction of the
direct transport. When the excess hydration fraction exceeds one then the indirect
transport of vapour from sublimating ice dominates the total hydration. Note this is
not guaranteed: adiabatic cooling during ascent freeze-dries large amounts of vapour
into ice. Thus for there to be an excess hydration, sufficient mixing must occur for
some or most of the ice to be sublimated back into vapour.

Figure 6.3 shows the tracer totals Tv, Tc and Tp, the rate of change of the tracer
totals, and retained fraction of each tracer over time in simulation control. The
tracer totals in figure 6.3(a) increase rapidly until a few seconds after plume forcing
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Fig. 6.3 Evolution of tracers in the stratified layer in simulation control. (a) Total vapour
Tv, ice Tc and passive tracer Tp. (b) Rate of change of total vapour, ice and passive tracer.
(c) Retained fraction of vapour, ice and passive tracer. The grey vertical line indicates the
time t = tlim when plume forcing ends.

ends (indicated by a vertical grey line), when the majority of the plume fluid has
risen through the uniform layer. The totals Tc and Tp increase at similar rates and
Tv increases more slowly due to freeze-drying of vapour during ascent towards zmax.
Nonetheless, Tv increases monotonically whilst from t ≈ 20 s onwards Tc decreases as ice
is sublimated – note the change of sign in ∂tTc in figure 6.3(b). Some of the reduction
in Tc is due to parts of the plume falling below z = −L, though only a small fraction:
note the small reduction in Tp which quantifies this effect. In the relaxation stage from
t ≈ 20 s onwards, there is an approximately constant conversion of ice into vapour.
We hypothesise that this occurs as plume fluid descends and adiabatically warms as
buoyancy contours relax towards their initial height. It is clear that this steady-state
conversion cannot continue indefinitely since eventually fluid either reaches saturation
or the ice content is depleted. Figure 6.3(c) shows that the retained fraction of vapour
initially falls rapidly due to freeze-drying but begins to increase from t ≈ 2 s onwards,
indicating mixing begins to increase the vapour content via sublimation relatively early
in the flow evolution. From t ≈ 10 s onwards, the retained fraction of vapour Tv/Iv > 1
so there is an excess hydration. Correspondingly, the retained fraction of ice Tc/Ic < 1.

6.3.3 Evolution of mixing statistics

To quantify turbulent mixing and vertical transport by the plume we consider plume
averages of the mean and turbulent vertical velocity as well as relevant mixing metrics
introduced in chapter 3. The plume average ⟨·⟩plume is calculated from x-z cross-sections
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Fig. 6.4 Vertical velocity and mixing metrics in the control simulation. All quantities are
averaged within the plume ϕp ≥ 10−3 in the stratified layer z ≥ −L. (a) Turbulent vertical
velocity ⟨w′⟩plume and mean vertical velocity ⟨w⟩plume. (b) Buoyancy variance dissipation
rate ⟨χ⟩plume and TKE dissipation rate ⟨ε⟩plume. (c) Instantaneous mixing efficiency ⟨η⟩plume

and cumulative mixing efficiency ⟨η⟩plume
cum defined in (6.3).

by averaging in the horizontal and vertical where ϕp ≥ 10−3 and restricting to the
stratified layer z ≥ −L. Note that in this chapter, ⟨·⟩plume does not include a time
average (as opposed to the use of this notation in chapter 4 and 5). The horizontal
component of the average is weighted by the radius from the plume centreline to
emulate a volume average (hence the choice of notation, see § 3.4). A test simulation
with the full 3D volume average computed at runtime showed negligible difference with
the 2D approximation. The mean vertical velocity is defined as in chapter 4, with
an azimuthal average and a running mean over one buoyancy period. Later, when
vertical shear is introduced in the stratified layer, the weighting is modified to use the
radius from the centre of the intrusion. The decomposition of the vertical velocity
is not calculated for those simulations since the plume is no longer approximately
axisymmetric. Turbulent mixing is quantified using the buoyancy variance dissipation
rate χ(x, t), which acts as a sink of potential energy due to mixing, and the turbulent
kinetic energy dissipation rate ε(x, t), which acts as a sink of (turbulent) kinetic energy
due to mixing. The quantities χ and ε are formally defined in § 3.4. The instantaneous
mixing efficiency is defined as η = χ/(χ+ ε) and quantifies the fraction of dissipated
energy that results in mixing (see § 3.4 for a more in depth discussion). The cumulative
mixing efficiency,

ηcum(x, t) =
´ t

0 χ dt´ t

0 χ dt+
´ t

0 ε dt
, (6.3)
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is an integrated form of η which represents the energetic influence of a mixing event
that occurs over a finite time period (Davies Wykes et al., 2015).

The vertical velocity and mixing statistics are explored in figure 6.4. There is an
initially large mean vertical velocity in the plume which decreases over time. Note in
particular that the turbulent vertical velocity is, on average, negative between t ≈ 4 s
to t ≈ 10 s as plume fluid overturns and collapses. During this collapse, intense mixing
between the plume and environment occurs. As the plume penetrates and collapses,
⟨ε⟩plume remains large, whilst ⟨χ⟩plume increases during penetration and then remains
steady from t ≈ 5 s to t ≈ 15 s as the plume collapses. As the flow restratifies, ⟨χ⟩plume

and ⟨ε⟩plume both reduce to zero. The more gradual increase in ⟨χ⟩plume relative to
⟨ε⟩plume occurs because the plume already has energetic turbulence at penetration
but it takes some time for intense buoyancy gradients to become established between
the plume and environment. Therefore the mixing efficiency ⟨η⟩plume in figure 6.4(c)
increases over time. Interestingly, whilst the mixing metrics reduce in magnitude
as the flow restratifies at late times, the instantaneous mixing efficiency remains
roughly constant. Figure 6.4(c) also shows that cumulatively around 30% of the energy
dissipated during convective penetration results in mixing, consistent with our results
in chapter 3.

6.4 Competing effects of sedimentation and mixing

Here we consider simulations control, weak_sed, sed, and strong_sed which represent
regimes with RS = 0, 0.06, 0.6, 7.2, respectively. This experiment is similar to that
presented in § 5.3.3 so we only briefly summarise the flow evolution. In § 5.3.3 we found
that when ws is sufficiently large, but not necessarily larger than the typical turbulent
vertical velocity in the plume, then ice that is kept in suspension by turbulent eddies
is quickly lost from the plume once fluid overturns near zmax and subsides to form the
intrusion. The dynamics and mixing are identical in the four simulations considered
here; our focus is on the modulation of the hydration process by sedimentation, which
starves the plume of ice and limits the effects of turbulent mixing. We also explore
the extent to which semi-quantitative models based only on dynamics can predict the
distribution of vapour concentrations after the flow restratifies.
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6.4.1 Evolution of moist tracers

Figure 6.5 shows the vapour and ice concentration in the penetration, collapse and
relaxation stages of the flow evolution in each simulation. Simulations control and
weak_sed appear almost identical, with the effects of the very weak sedimentation in
weak_sed appearing only at late times when ice finally settles out of the plume (panel
j). There is some evidence that less ice reaches the top of the plume in weak_sed,
since the vapour concentrations are slightly reduced relative to control at late times.
Simulation strong_sed lies at the other extreme to weak_sed: very little ice is carried
into the stratified layer and no ice reaches the intrusion. Thus vapour concentrations
are considerably smaller than in the simulations with weaker sedimentation. The
intermediate case in simulation sed lies between these two regimes. Ice is carried into
the plume but relatively little reaches the edge of the plume cap where the most efficient
mixing occurs between the plume and environment. Thus vapour concentrations are
noticeably smaller than in simulations control and weak_sed.

Figure 6.6 quantifies the evolution of moist tracers as in figure 6.3. Black horizontal
lines indicate the value of ws in each simulation in figure 6.6(d), which shows the
plume-averaged mean and turbulent vertical velocity as in figure 6.4(a). Note that
ws in simulation strong_sed is off the scale. In figure 6.6(b), the time derivative
of the passive tracer total ∂tTp has been omitted for clarity. As stated earlier, the
dynamics of the flow itself are unaffected by sedimentation, so the passive tracer (which
is unaffected by microphysics) and the vertical velocities evolve in a similar manner
in all four simulations, with some natural variation. The similar moist evolution in
weak_sed and control is evident in figure 6.6, with only a minor reduction in the total
hydration and excess hydration fraction. The rate of change of ice ∂tTc only becomes
negative at t ≈ 20 s (panel b) when the mean vertical velocity falls below ws (panel d).

In simulation strong_sed, although almost no ice or vapour is transported into
the stratified layer, the small amounts of vapour that cross the z = −L surface follow
the same process of freeze drying as in other simulations, with a brief reduction in
the retained fraction of vapour (panel c) because the plume has not yet adiabatically
cooled so Tv initially increases more rapidly. Once the plume penetrates deeper into the
stratified layer, most vapour is converted to ice and lost so the retained fraction reduces
to zero. The intermediate case in simulation sed exhibits an interesting evolution:
during penetration, Tc and Tv increase roughly in line with simulation control and
weak_sed, though slightly reduced (panel a). From t ≈ 8 s, the vertical velocity falls
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Fig. 6.6 Comparison of tracer totals and vertical velocity in simulations control, weak_sed,
sed, and strong_sed. (a) Total vapour Tv, ice Tc and passive tracer Tp. (b) Rate of change
of total vapour, ice and passive tracer. (c) Fraction of input vapour, ice and passive vapour
remaining in the stratified layer at time t. (d) Mean w and turbulent w′ vertical velocity
compared with sedimentation velocity ws (horizontal black lines). In (a)–(d), the vertical
grey line indicates the time t = tlim when plume forcing ends.

below ws (panel d) so the transport of ice slows down (panel b) and Tc decreases from
t ≈ 15 s (panel a). As the flow begins to relax, there is continued conversion of ice
into vapour so the retained fraction of vapour increases up to t ≈ 20 s and decreases
thereafter (panel c), though the total amount of vapour Tv remains approximately steady
until the end of the simulation. The total hydration is approximately halved relative to
simulations control and weak_sed. There is no excess hydration in simulation sed as
sedimentation restricts the amount of ice available to sublimate; the rate of change
∂tTv is reduced from t ≈ 15 s (panel b) once sedimentation dominates the flow and ice
has settled out of the plume.

6.4.2 Semi-quantitative hydration models

As described in § 6.1, we use two semi-quantitative models based on ‘fast’ and ‘slow’
sedimentation regimes to predict the distribution of vapour concentration ϕv at the
end of the simulation, following restratification of the environment once the plume
settles and isopycnals relax. Crucially, these distributions are determined by dynamics
alone, with no information on the mixing process or microphysics. From each model
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we compute a PDF of ϕv and compare with the observed PDF of ϕv at time t = tend in
each simulation. The models are derived as follows:

• Slow sedimentation (final T): assume that vapour condensed into ice is kept
suspended in the plume. Thus the vapour concentration in the relaxation stage
of the flow evolution is determined by the saturation concentration once the
plume reaches equilibrium with the environment. Hence ϕv is controlled by the
environmental temperature at the height zf where each fluid parcel settles. To
estimate the PDF of ϕv, compute a PDF of the heights of plume fluid with
ϕp ≥ 10−3 at t = tend. Given a height zf , the saturation vapour concentration is
then ϕvs(Tfinal) where

Tfinal = T0 + ΘN2
0 zf − Γ(zf +H). (6.4)

and ϕvs is defined in (5.20). Henceforth we refer to this as the ‘Final T’ model.

• Fast sedimentation (minimum T): assume that all vapour condensed into
ice is lost via sedimentation. Thus the vapour concentration is determined by the
saturation concentration at the minimum temperature along each fluid parcel
trajectory. To estimate the PDF of ϕv, we compute a set of trajectories. The
velocities are provided by x-z cross-sections through the plume centreline (as
shown in e.g. figure 6.5) of the vertical and horizontal velocity every ∆t = 0.25 s.
We initiate 64 trajectories at random points within the plume ϕp ≥ 10−3 and
within the height range 0.06 m≤ z ≤ 0.18 m every 0.25 s from t = 0 to t = 10 s.
Trajectories are propagated to the end of the simulation at time t = tend and
rejected if the trajectory ends outside the plume. We compute a PDF of the
minimum temperature Tmin along the ∼ 1200 trajectories. To account for the
use of 2D data, the contribution of each trajectory to the PDF is weighted by
its radial distance from the plume centreline. The PDF of ϕv is then computed
using ϕvs(Tmin) as defined in (5.20). Henceforth we refer to this as the ‘Min T’
model.

Figure 6.7(a)–(d) compares the Final T and Min T models with the observed vapour
distribution at t = tend in each simulation. The horizontal dashed lines indicate the
mean of the model and observed distributions. Figure 6.7(e)–(h) shows the PDFs of
Tmin and Tfinal in the Min T and Final T model, respectively, and the environmental
temperature at the equilibrium height z = zn and the maximum penetration height
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Fig. 6.7 Comparison of semi-quantitative hydration models with the observed vapour
distribution within the plume ϕp ≥ 10−3 at the end t = tend of simulations control, weak_sed,
sed and strong_sed. (a)–(d) Comparison of observed PDF (black) with the Min T (blue)
and Final T (red) predictions as described in the text. Horizontal dashed lines indicate
the mean of each distribution. (e)–(h) Comparison of PDFs of the minimum temperature
(blue) and final temperature (red) along parcel trajectories calculated as described in the
text. Horizontal lines indicate the environmental temperature at z = zmax (dot-dashed) and
z = zn (dotted).

z = zmax. Note that the temperature distributions are qualitatively similar across the
four simulations since the dynamics are unaffected by the variation in ws. As expected,
vapour concentrations are indeed determined by the final temperature along parcel
trajectories in simulations control and weak_sed, both with regime numbers RS ≪ 1
and RH ≫ 1, in which ice is abundant in the plume. Note that the distribution of
final temperatures is centred on the environmental temperature at z = zn since this
represents the height of the intrusion where mixed plume fluid settles. There is a
small discrepancy between the Final T model and the observed distribution at large
ϕv, which corresponds with the warmest fluid parcels which may not have relaxed to
the environmental temperature by t = tend.

As ws is increased, the observed vapour distribution moves closer to being controlled
by the minimum temperature along parcel trajectories. In simulation strong_sed,
with regime RS ≫ 1 where we expect the observed and Min T models to have the
closest agreement, there is in fact an overestimation by the semi-quantitative model.
We hypothesise that the reduction of vapour concentrations below ϕvs(Tmin) is caused



172 Influence of processes in a minimal model of convective hydration

Fig. 6.8 Fluid parcel trajectories in simulation strong_sed associated with the coldest,
mean and warmest minimum temperature Tmin. (a) Trajectories overlaid on plume contour
at t = 10 s and t = 35 s. Line colour indicates temperature T . Coloured symbols are shown
at t = 5, 10, 15, 20, 25, 30, 35 s along each trajectory. (b–d) vapour, ice, and saturation vapour
concentration along the three trajectories. The horizontal grey line indicates the minimum
saturation vapour concentration ϕvs(Tmin) along the trajectory. The time when Tmin is
attained in each simulation is shown as a vertical grey line.

by dilution of plume fluid after reaching its minimum temperature Tmin as a result of
mixing with dry environmental fluid. Note that this does not reduce the total hydration
– which is not fully captured by the observed PDF – since the total vapour is simply
shared among a larger volume.

To illustrate the dilution effect, figure 6.8 shows three fluid parcel trajectories in
simulations strong_sed overlaid on outlines of the plume at t = 10 s and t = 35 s in
panel (a). The vapour, ice, and saturation vapour concentration along each trajectory
are shown in panels (b)–(c). In these plots, the horizontal grey line indicates ϕvs(Tmin)
on each trajectory and the vertical dashed grey line indicates the time at which Tmin

was attained. Trajectories can be broadly categorised based on Tmin: trajectories which
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enter the intrusion directly have the warmest Tmin, whilst trajectories that reach the top
of the plume cap have the coldest Tmin. In the RH ≫ 1 regime, plume fluid remains at
saturation during penetration so ϕv is limited by ϕvs until reaching its maximum height
in the stratified layer. The minimum temperature Tmin is attained at this maximum
height. As fluid parcels decelerate on approach to their maximum height (or begin
to move laterally), sedimentation removes all ice content. Parcels are then warmed
either by mixing with the warm environment (as in the cold and mild trajectories)
or by mixing with warmer, mixed plume fluid in the intrusion. Correspondingly, ϕvs

increases, but there is no increase in ϕv as there is no ice to sublimate. Mixing in
the intrusion homogenises ϕv; the coldest trajectories gain vapour whilst the warmest
trajectories lose vapour. Further mixing with dry environmental fluid surrounding the
intrusion dilutes the vapour that remains in the plume, reducing ϕv.

Overall our results show that semi-quantitative models based on dynamics alone
are able to produce reasonable estimates of the vapour PDF following relaxation of the
flow, given some knowledge of the sedimentation regime determined by RS. When ws

dominates velocities in the flow, along each trajectory ϕv is limited by ϕvs(Tmin) and
further diluted by mixing with the dry environment. Otherwise, ice remains suspended
in the plume and keeps plume fluid close to saturation. The models as described
are limited to predicting the distribution of vapour only. However, given additional
knowledge of the moist partitioning, determined by RH, and the plume tracer flux at
penetration, then a prediction could be formulated for the total hydration.

6.5 Influence of convective intensity on hydration

In this section we consider simulations control+F, sed+F and strong_sed+F in which
the integral source buoyancy flux F0 is quadrupled relative to control, thus increasing
the convective intensity. As has been noted throughout this thesis, in convective
penetration of a buoyant plume into a stratified layer the maximum penetration height
zmax is directly linked to the strength of the plume forcing: zmax ∼ F

1/4
0 . D18 place

zmax as the key quantity determining the net hydration by a convective overshoot, since
penetration to a greater maximum height results in mixing with relatively warmer
stratospheric air, thereby increasing ϕvs further and allowing sublimation of a larger
amount of ice. Here we explore this effect and its competition with sedimentation. We
also consider the influence of convective intensity on turbulent mixing.
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6.5.1 Evolution of moist tracers

Figure 6.9 summarises the flow evolution and figure 6.10 summarises the evolution
of the moist and passive tracers as in figure 6.5 and figure 6.6, respectively. The
increase in convective intensity from quadrupling F0 alters the flow evolution in two key
respects: the maximum penetration height zmax is increased by a factor of

√
2 and the

azimuthally averaged vertical velocity on the plume centreline w ∼ F
1/3
0 increases by a

factor of 41/3 ≈ 1.6 (see § 2.2.3 for further details on w). Thus zmax is reached slightly
faster than in control, and the transport of tracers into the stratified layer is increased
– note the more rapid increase in Tp in figure 6.10(a). Penetration to a larger zmax allows
the plume to mix across the b = 0.07 m s−2 contour, compared with the b = 0.04 m s−2

contour in simulation control. Similarly, the b = 0.04 m s−2 contour shown in figure 6.9
is more significantly distorted in the strong forcing simulations. Consequently, vapour
concentrations are increased in control+F relative to control and remain slightly
higher in the domain (and therefore slightly warmer) after relaxation of the flow.
As opposed to simulations sed and strong_sed, there is evidence of some vapour
remaining in the plume at late times in sed+F and strong_sed+F. The extent of the
dry environment below the plume, which is hydrated by ice sedimenting out of the
plume, is wider, suggesting ice reaches further into the intrusion in the strong forcing
simulations despite the strong sedimentation velocity.

The total hydration in the strong forcing simulations is increased, consistent with
S18 and D18. We also note that the total hydration in sed+F is greater than half
that in control+F, suggesting the competition between sedimentation and mixing is
more in favour of mixing when convective intensity is increased. Indeed, this follows
from the increased vertical velocity in the plume which modifies the RS regime in
sed+F and strong_sed+F to RS = 0.45, 4.0, respectively. These simulations remain
comparable with the control forcing simulations sed and strong_sed, but the change
in RS signifies the reduced influence of sedimentation when convective intensity is
increased that allows ice to remain suspended in the plume for longer – note the ice
total Tc decreases more rapidly in simulations sed and strong_sed in figure 6.6(a)
compared with sed+F and strong_sed+F in figure 6.10(a). As noted with the passive
tracer, the increase in Tv is also more rapid in the strong forcing simulations, both
because of the stronger updraft velocity as well as the increased buoyancy in the
plume which supports larger vapour concentrations. Overall this suggests that the
increased hydration is a function of increased transport, stronger mixing, as well as
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Fig. 6.10 Evolution of moist tracer totals as in figure 6.6(a-c), for simulations control,
control+F, sed+F, and strong_sed+F.

access to greater potential temperatures. However, we note from figure 6.10(c) that
despite the increased total hydration in control+F relative to control, there is no
longer an excess hydration. During ascent towards zmax, a larger amount of vapour is
freeze-dried – note the lower minimum in the retained fraction of vapour in the strong
forcing simulations. Therefore whilst access to greater potential temperatures in the
environment is sufficient to increase the total hydration relative to the control forcing
simulations, it is not sufficient to recover all of the vapour that is converted to ice
during the penetration stage (bearing in mind that more vapour is also carried into
the stratified layer during penetration).

6.5.2 Turbulent mixing

To assess the influence of convective intensity on turbulent mixing, in figure 6.11 we
compare the vertical velocity and mixing metrics in control and control+F. Only
one strong forcing simulation is shown since these quantities are controlled by the
dynamics which is influenced by F0 but not ws.

Figure 6.11(a) shows that the turbulent vertical velocity is initially larger control+F rel-
ative to control, whilst the mean velocities are comparable. The difference in the
turbulent velocity vanishes from t ≈ 5 s onwards, suggesting the collapsing stage of
the flow evolution is less influenced by convective intensity. The plume averaged TKE
dissipation rate ⟨ε⟩plume and buoyancy variance dissipation rate ⟨χ⟩plume are system-
atically larger in control+F throughout the simulation. Thus the turbulence is more
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Fig. 6.11 As in figure 6.4, for simulations control and control+F.

energetic and the mixing more intense when the convective intensity is increased. Note
that χ is a measure of the destruction of buoyancy gradients which depends on the
magnitude of the buoyancy difference as well as the sharpness of the gradients. We
can crudely estimate the buoyancy difference using characteristic scales from integral
plume theory (see § 2.2.3). The plume centreline buoyancy bmax at the maximum pene-
tration height zmax ∼ F

1/4
0 scales as bmax ∼ F

2/3
0 z−5/3

max ∼ F
1/4
0 whilst the environmental

buoyancy benv at zmax scales as benv ∼ zmax ∼ F
1/4
0 . Therefore the buoyancy difference

between the plume and environment only weakly scales with F0, whilst the increase
in ⟨χ⟩plume is roughly a factor of 3. Hence we conclude that the buoyancy gradients
generated between the plume and environment, that are eroded by turbulent mixing,
become sharper as the convective intensity is increased in the sense that the change
in buoyancy occurs over a shorter distance. Finally, we note from figure 6.11(c) that
despite the increase in ⟨χ⟩plume and ⟨ε⟩plume, the fraction of dissipated energy that
results in mixing does not depend on convective intensity: there is no clear difference in
the instantaneous and cumulative mixing efficiency between control and control+F.
However, a stronger plume is more energetic so, in total, more energy is dissipated as
the plume impinges on the stratified layer, resulting in more intense mixing between
the plume and environment.
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Fig. 6.12 As in figure 6.7, for simulations control, control+F, sed+F, and strong_sed+F.

6.5.3 Consequences for semi-quantitative models

We found in § 6.4 that sedimentation and mixing play a competing role in determining
net hydration of the stratified layer, with vapour concentration in a fluid parcel
determined by the minimum temperature along its trajectory when sedimentation
is dominant or its final temperature when sedimentation is weak. Using the strong
forcing simulations we can assess how convective intensity influences this conclusion.

Figure 6.12 shows the Min T and Final T models as described in § 6.4.2 compared
with the observed vapour distributions at t = tend in the strong forcing simulations. As
hypothesised by D18, increased convective intensity results in mixing with relatively
warmer environmental fluid and thus an increase in the final temperature distribution
of the flow. This is clearly shown in figure 6.12(f)–(h), noting as in § 6.4 that the
distribution of Tfinal is governed by dynamics alone so the distributions are qualitatively
similar. The observed vapour distribution in control+F is underestimated by the final
T model. This is likely because the flow takes longer to relax relative to simulation
control since plume fluid subsides from a greater maximum penetration height –
compare panel (i) and (j) in figure 6.9. Hence if the simulation had been run for
longer, we would expect the observed PDF to match the prediction from the Final T
model. In simulation strong_sed+F, where sedimentation is dominant, the observed
vapour distribution is close to but underestimated by the Min T model. Whilst
dilution remains a factor, here the stronger turbulent and mean vertical velocities in
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the plume keep ice suspended for longer – as noted in § 6.5.1 – which allows the vapour
concentration to increase after the plume and environment begin to mix unlike in
simulation strong_sed. A similar effect is seen in simulation sed+F which lies between
the predictions of the Min T and Final T model predictions as in the control forcing
case, though arguably closer to the Final T distribution in the strong forcing case.
This again illustrates the reduced influence of sedimentation under increased convective
forcing. The results for the strong forcing simulations shown in figure 6.12, as well
as figure 6.7 with the control forcing, show that knowledge of the mixing process is
not essential to predict the final ϕv PDF when sedimentation is weak; the equilibrium
height z = zn is sufficient information.

6.6 Convective penetration in the presence of large-
scale vertical shear

The final results we present in this chapter address the effect of large-scale vertical
shear in the stratified layer in simulations weak_shear, shear, and strong_shear.
Here, the behaviour of the flow is significantly modified by the presence of a mean flow.
First, we explore the influence on hydration of the stratified layer, which is closely
related to the enhancement of turbulent mixing. We revisit some analyses used in
chapter 3 and § 5.5 to investigate changes in turbulent mixing using the (moist and
passive) buoyancy-tracer volume distribution. Finally, we explore the impact of vertical
shear on internal gravity wave breaking and modification of the associated vortical
response. We also explore the link between vertical displacement of fluid parcels in the
stratified layer and gravity wave breaking as part of the explanation for the ‘jumping
cirrus’ phenomenon discussed in § 5.2.

6.6.1 Evolution of flow and moist tracers

The flow evolution in the three shear simulations is summarised in figure 6.13 and the
evolution of moist tracers is shown in figure 6.14. Note in figure 6.13 we only show the
vapour concentration unlike figures 6.5 and 6.9. We also indicate the flow with black
arrows. In figure 6.14 the retained fraction of vapour is separated from the ice and
passive tracers for clarity. The presence of vertical shear deforms the plume cap, which
has two consequences: the intrusion is increasingly asymmetric as λ and therefore RSH

increase, with most mixed plume fluid lying downstream of the plume cap when shear
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is strong, and modification of the path taken towards the maximum penetration height.
As RSH increases, the plume reaches zmax further downstream, meaning fluid parcels
take longer to reach zmax and become exposed to environmental fluid earlier along their
trajectory. The downstream shift of zmax also means the downward flow of fluid which
typically inhibits the upward flow when there is no shear is both weaker and dislocated
from the rising plume. This allows a more rapid transport of fluid into the stratified
layer, which can be seen from the more rapid increase in Tp in figure 6.14(a).

The total hydration Tv(tend) increases with shear rate, as well as the excess hydration
fraction. An important caveat for figure 6.14 is that the shear simulations are run until
t = 15 s so do not reach the relaxation stage seen in other simulations from t ≈ 15 s
onwards. It can be seen from figure 6.10 that the final vapour total Tv may evolve very
differently in this stage (compare Tv in simulations control and sed+F). Nonetheless,
the increased excess hydration fraction and the more rapid increase from t ≈ 5 s
onwards suggests that the increase in hydration comes from increased sublimation of
ice as a result of more intense mixing between the plume and environment. This is
supported by increased deformation of buoyancy contours in e.g. panel (e) and (f)
of figure 6.13. As noted in other experiments, the retained fraction of vapour Tv/Iv

in figure 6.14(b) initially decreases before later increasing and exceeding unity. This
minimum is shallower (i.e. Tv/Iv does not become as small) in the shear experiments,
though the change is not monotonic – this may be related to stronger mixing between
the plume and environment during the rise of fluid parcels towards zmax, which begins
to sublimate ice earlier in the evolution of the flow so the total vapour Tv does not
decrease as much. The minimum in Tv/Iv also occurs later because fluid parcels take
longer to reach zmax when the plume cap is more significantly deformed by shear, so
the significant increase in vapour content due to sublimation of ice at the top of the
plume cap occurs later.

The spatial distribution of the moist regions formed via sublimation of ice is
increasingly asymmetric as the shear rate increases and extends further along the
intrusion. In the absence of shear, regions with larger ϕv formed surrounding the
plume cap, whilst in simulations shear and strong_shear vapour forms downstream
of the plume cap. Figure 6.13(f) appears to show a Kelvin-Helmholtz-like roll-up of
the intrusion in simulation strong_shear at t = 10 s, with two ‘billows’ resulting in
significant perturbations of the b = 0.01 m s−2 and b = 0.04 m s−2 contours. The
roll-up relaxes by t = 15 s, though intense mixing continues at the top of the intrusion
between 0.5 m ≤ x ≤ 0.6 m. Kelvin-Helmholtz (KH) instabilities arise in regions of a
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Fig. 6.14 As in figure 6.10(a) and (c), for simulations weak_shear, shear, and
strong_shear.

stratified shear flow where Rig ≤ 1
4 , where Rig is the local gradient Richardson number

defined in (1.9). Recall from § 6.2 that all of the shear simulations are initially stable,
so KH instabilities cannot form spontaneously and must involve a local enhancement
of shear rate or reduction in the local stratification. Indeed, we will show later that
the large-scale shear flow induces a downward flow over the plume cap (e.g. panel (c)
and (e) in particular) which can locally enhance the shear rate such that Ri ≤ 1/4,
allowing shear instabilities to develop. Another interesting aspect of the flow structure
in shear is the formation of a hydraulic jump-like feature, marked by the significant
‘kink’ in the forming intrusion at t = 10 s and the persistence of this structure at
t = 15 s. Again, we will revisit this point later in § 6.6.3 where we consider the residual
circulation that forms above the plume, linked to the vortical and wave response to
convective penetration in the presence of large-scale shear.

Evaluation of the semi-quantitative hydration models detailed in § 6.4 is difficult
for the shear simulations because they do not reach the relaxation stage of the flow
evolution. Nonetheless, in the absence of sedimentation we found that the Final
T model accurately captures the observed vapour distribution. It is instructive to
compare the distribution of final temperatures Tfinal and minimum temperatures Tmin

along parcel trajectories, as shown in figure 6.15. As the shear rate increases, the
final temperatures become warmer owing to enhanced mixing between the plume
and environment which more effectively warms plume fluid. This is consistent with
figure 6.13 where it can be seen that the intrusion sits slightly higher in the simulations
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Fig. 6.15 Comparison of (a) observed vapour concentration PDF with the (b) Final T and
(c) Min T model predictions as described in § 6.4. The temperature PDFs in (b) and (c) have
been smoothed for clarity.

with stronger shear. The minimum temperatures in figure 6.15(c) are more widely
distributed, primarily because of an increased number of trajectories with warmer
Tmin. This suggests that more plume fluid enters the intrusion directly rather than
rising towards zmax. The observed vapour distribution in the shear simulations at
t = 15 s in figure 6.15(a) is similar in simulations weak_shear and shear but wider in
strong_shear, again indicating enhanced mixing between the plume and environment.

The enhanced mixing between the plume and environment in simulations with
stronger shear is well illustrated by the buoyancy-vapour and buoyancy-ice volume
distributions Wv and Wc introduced in § 5.5 and shown here in figure 6.16 at t = 15 s
in the three shear simulations. As the shear rate increases, the transport of ice-loaded
fluid towards large b (panel f) due to turbulent mixing is increased. In turn, the mixing
of more fluid to large b allows a more significant proportion of ice to be sublimated
since ϕvs is larger. Note that the largest buoyancy reached does not increase with
the shear rate. We therefore conclude that large-scale vertical shear increases the
total hydration by more effectively mixing plume and environmental fluid near the
maximum penetration height and therefore increasing the transport of volume (hence
ice) to the largest accessible buoyancy. Importantly, the enhanced hydration is not a
result of increasing the transport of moisture into the stratified layer, nor increasing
the maximum accessible buoyancy.

6.6.2 Influence on mixing

Having established that mixing is enhanced in the presence of strong vertical shear,
here we focus on quantifying the effect and explore the spatial distribution of mixing.
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Fig. 6.16 Buoyancy-vapour and buoyancy-ice volume distributions Wv and Wc at t = tend
in simulations weak_shear, shear and strong_shear, with RSH ≪ 1, ∼ 1 and RSH ≫ 1
respectively. In (a)–(c), saturation curves ϕv = ϕ0 exp(α(Θb − Γ(z + H))) are shown with
z = −L (black dotted), z = zn (black dot-dashed), and heights z = 0.01, 0.03, 0.05, 0.07, 0.09 m
(dashed colour lines).

Figure 6.17 shows the mixing metrics χ, ε, and the mixing efficiencies discussed earlier
in § 6.4 and § 6.5. The TKE dissipation rate is slightly increased in the strong shear
simulations, especially at early times. Although we only see the evolution of the
mixing metrics up to t = 15 s, there is evidence that the TKE dissipation rate is
gradually decreasing in simulations control, weak_shear, and shear. However, the
increased value of ε appears to persist for longer in simulation strong_shear. The
buoyancy variance dissipation rate χ also tends to be larger in the shear simulations,
especially in simulation shear with RSH ∼ 1 where there is a large peak after the plume
reaches zmax at t ≈ 5 s which may correspond with initial formation of a hydraulic
jump. The evolution of the mixing is similar to simulations without shear, as noted in
§ 6.3, with η increasing over time since χ remains approximately steady once mixing
between the plume and environment begins whilst the turbulence gradually becomes less
energetic in the plume. The cumulative mixing efficiency is smaller in weak_shear and
strong_shear relative to control whilst shear is more efficient. Given the increase in
total hydration with shear rate, this suggests that the mixing efficiency is not a useful
proxy for determining the influence of mixing on hydration.

Figure 6.18 shows the spatial distribution of χ in x-z cross-sections through the
plume centreline, indicating where turbulent mixing is active in the flow. The structure
seen in simulation weak_shear is consistent with that seen in the absence of shear
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Fig. 6.17 Vertical velocity and turbulent mixing metrics as in figure 6.11, for simulations
control, weak_shear, shear, and strong_shear.

as in chapter 3, where a thin layer of large χ forms at the edge of the plume cap as
the plume impinges on the more buoyant environment. As the shear rate increases,
the layer of large χ is stretched downstream and extends over a larger surface area.
Regions with moderate χ are also evident in the environment and cover a larger area
as the shear rate increases. In simulation shear, the largest values of χ are found
immediately downstream of the plume cap, in the region earlier noted to resemble a
hydraulic jump. In strong_shear there are layers with large χ present throughout the
intrusion. There is also evidence of shear instabilities in these layers. Note also that
this region of enhanced mixing does not appear to lift as it moves downstream unlike
the RSH ∼ 1 simulation.

Our results suggest a critical range of shear rates where the more energetic turbulence
generated in the presence of large-scale shear results in more intense mixing which
extends over large parts of the interface between the plume and environment. As we
will see in the following subsection, the increased efficiency in simulation shear could be
attributed to the presence of a hydraulic jump-like feature that results in a recirculating
flow downstream of the plume cap, where mixing is significantly enhanced. In simulation
strong_shear no hydraulic jump is seen and the enhanced mixing appears to instead
result from internal wave breaking and shear instabilities at the top of the intrusion.

To explore the changes in the spatial distribution of mixing further we revisit the
net mixing effect distribution M for the passive tracer ϕp that was used in chapter 3
to partition plume fluid between three stages of mixing. We do not explore the
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Fig. 6.18 x-z cross-section through the plume centreline of the buoyancy variance dissipation
rate χ at t = 5, 10, 15 s in simulations weak_shear, shear, and strong_shear.

partitioning here since the flow does not reach a quasi-steady state, meaning the
method presented in chapter 3 is not valid. Nonetheless, we can use the raw values of
M to identify regions where turbulent mixing is particularly active, indicated by values
of M which are positive but small. Mixed fluid with large (positive) M is ‘older’ in
the sense that it has undergone more mixing. See § 3.3 for a more detailed discussion
of the interpretation of M . Figure 6.19 shows the net mixing effect distribution in
(b, ϕp)-space and physical space at t = 12 s in control and the three shear simulations.
As has been noted previously, simulation weak_shear behaves in a similar manner to
control. The layer of enhanced χ at the edge of the plume cap where the most efficient
turbulent mixing occurs can be seen as a layer of small positive M . As mixed fluid
subsides and joins the intrusion it becomes homogenised and the value of M increases.
In the shear simulations, it can be seen that mixing between undiluted plume fluid
with M < 0 and the rest of (b, ϕp)-space occurs over a wider range of b and ϕp. In
simulation strong_shear, the layer of small positive M extends along the top of the
intrusion, consistent with figure 6.18. Mixed fluid accumulates at the bottom and far
downstream edge of the intrusion. Simulation shear is distinct in that much larger
regions of intrusion have small values of M , suggesting intense mixing throughout the
intrusion. This explains the observation from figure 6.17 that the mixing efficiency is
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Fig. 6.19 Net mixing effect distribution M defined in § 3.3 at t = 12 s in simulations
control, weak_shear, shear, and strong_shear. M is shown in both (b, ϕp)-space and
physical space.
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largest in the RSH ∼ 1 regime: the energetic turbulence results in mixing throughout
the intrusion rather than just on the top edge as in the RSH ≫ 1 regime, meaning
a larger proportion of dissipated energy results in mixing. However, only mixing at
the top of the plume contributes to hydration by warming plume fluid parcels, so the
hydration is not enhanced to the same extent as simulation strong_shear, where the
most intense mixing is more localised but effective at hydration.

6.6.3 Influence on internal gravity wave response

In chapter 4 we examined internal waves generated by convective penetration into
a quiescent, stably stratified layer. Here we explore the effect of large-scale vertical
shear in the stratified environment. Numerical studies suggest that large-scale vertical
shear does not play a role in generating internal waves (Lane and Reeder, 2001),
which is consistent with our results in chapter 4 that link internal wave generation
with turbulence inside the plume cap that is unaffected by shear in the surrounding
environment. Instead, the mean flow acts to introduce asymmetry in the internal wave
beams as well as introducing critical layers where waves with a given frequency and
wavenumber will break, leading to the development of turbulence and mixing in the
region where they break. Turbulence above deep convection has been linked with
internal wave breaking as small-scale gravity waves encounter a critical level (Lane
et al., 2003), as well as secondary wave generation (Lane and Sharman, 2006).

Howland et al. (2021) explored shear-induced breaking of internal gravity waves
in an idealised flow, showing that linear ray-tracing theory is qualitatively useful
in describing refraction of waves by the shear despite the development of strong
nonlinearities which make the assumption of a slowly-varying background invalid.
Motivated by this conclusion, we use ray tracing to explore the effect of a mean flow
with linear shear U = λzx̂ in the presence of a linear stratification b = N2

0 z. Recall
the dispersion relation for internal gravity waves is

ω2 = N2
0

k2
h

k2
h + k2

z

, (6.5)

where kh and kz are the horizontal and vertical wavenumber, respectively. In the
presence of a mean flow, the extrinsic frequency Ω observed travelling with the mean
flow U satisfies the (stationary) dispersion relation in (6.5). This is distinct from the
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intrinsic frequency,

ω = U · k + Ω = λzkh +N0
kh√

k2
h + k2

z

, (6.6)

measured by a stationary observer, where k = (kh, kz) is the wavevector and we have
assumed that the large-scale shear may be treated as slowly-varying relative to the
wave period (Sutherland, 2010).

With respect to a stationary observer, an internal wave will propagate along a ray
whose position x is determined by the ray tracing equations,

dx

dt = ∇k ω,
dk

dt = −∇ω, (6.7)

where ∇k is the gradient in wavenumber space. Waves encounter a ‘critical level’ when
the vertical wavenumber kz becomes infinite and the extrinsic frequency drops to zero,
meaning upward propagating rays appear to bend over and become horizontal. As an
internal wave beam approaches its critical level, the wave amplitude and (with the
mean flow we consider) the vertical wavenumber grow until instabilities develop which
cause the wave to break. In the case of a linear shear, the intrinsic frequency ω and
horizontal wavenumber kh are conserved along a ray. Thus an internal wave beam
encounters its critical level at a height zc, determined by setting Ω = 0 in (6.6), where

zc = ω

λkh

. (6.8)

We therefore expect that as the shear rate λ increases, waves with a given frequency and
(horizontal) wavenumber encounter their critical level at a lower height. In particular,
low frequency waves with large horizontal wavenumbers (i.e. narrow wave beams) are
more likely to break lower in the stratified layer, close to the height of the penetrating
plume and downstream intrusion.

Figure 6.20 shows horizontal cross-sections of the vertical velocity in control and the
three shear simulations at t = 10 s. Rays computed according to (6.7) and initialised
at x0 = (0, Lh/2) are overlaid in green for ω/N0 = 0.5, 0.9 s−1 and k = 1, 10 m−1.
Although the ray calculation assumes a slowly varying background and entirely neglects
the effects of the penetrating plume, it gives a qualitative sense of the behaviour of
internal wave beams which propagate upwards and outwards from the plume cap. To
give a sense of the time-dependence of the wave response, figure 6.21 shows a time
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Fig. 6.20 x-z cross-sections through the plume centreline of the vertical velocity in simulations
control, weak_shear, shear, and strong_shear at t = 10 s on a symmetric log scale. Green
lines are computed using ray tracing (as described in the text) initialised at x = Lh/2, z = 0
with fixed values of ω/N0 and kh shown in the legend. Red dots indicate the location of the
time series of w shown in figure 6.21.

series of the vertical velocity at a single height z/zmax = 1.1 on the centreline of each
simulation, shown by a red dot in figure 6.20.

An important observation from figure 6.21 is that the wave response in simulations
control and weak_shear is one of propagating internal waves, with oscillations in
the vertical velocity evident above the plume. However, no oscillation is seen in
simulations shear and strong_shear, suggesting the large-scale shear is strong enough
to prevent upstream propagation of internal waves. Instead, we observe features
consistent with internal wave breaking; whilst the internal wave response in simulation
weak_shear in figure 6.20(b) is similar to that seen in control except with slight
asymmetries, the wave response when RSH ≳ 1 in figure 6.20(c) and (d) is structurally
different. Consistent with linear ray theory, the horizontal scale of the wave structures
increases with shear rate because smaller scale waves break (note that the dashed rays
with larger kh become horizontal, i.e. break, lower in the domain). The structures also
become incoherent at lower heights which is consistent with the theoretical prediction
in (6.8) that internal waves encounter their critical levels at lower heights when the
shear rate increases. We also note that the amplitude of the vertical velocity is larger
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Fig. 6.21 Time series of vertical velocity w at x = Lh/2, z/zmax = 1.1 in simulations control,
weak_shear, shear, and strong_shear. Location in each simulation shown as a red dot in
figure 6.20.

immediately above the plume when the shear rate is larger, consistent with breaking
of small-scale (high wavenumber) gravity waves. Similarly, the noisy signal observed
well above the plume in simulations shear and strong_shear is consistent with the
generation of turbulence and instabilities in the environment. The amplitude of the
vertical velocity appears larger close to the plume, especially where large-amplitude
perturbations of the intrusion are observed, e.g. near the hydraulic jump-like feature
in shear and the KH-like structures in strong_shear.

The internal wave response to penetrative convection is associated with a vortical
response which is a half wavelength out of phase with the vertical velocity response.
Lane (2008) consider the vortical response to convective penetration in an idealised
flow where an axisymmetric thermal (i.e. a finite release of buoyant fluid) rises through
a quiescent, stably stratified environment. A ‘secondary circulation’ of vortices with
alternating sign forms above the thermal. It is interesting to note that waves they
observe have a frequency very close to the environmental buoyancy frequency, again
consistent with our findings in chapter 4. D18 identify the alternating vortices as a
source of wind shear at the edge of a convective overshoot which can lead to instabilities
and mixing. To explore this effect in the presence of large-scale vertical shear we define
the residual circulation,

ur = u − λzH(z), (6.9)

and the out-of-plane residual vorticity in an x-z cross-section of the flow as

ζr = ŷ · ∇ × ur = ζy − λH(z), (6.10)
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where ζy = ∂zu− ∂xw is the out-of-plane vorticity, as used in chapter 4.
Figure 6.22 shows the time evolution of residual vorticity in simulations control and

weak_shear from t = 5 s to t = 15 s. Simulations weak_shear and strong_shear are
shown in figure 6.23. The residual circulation is overlaid as green arrows with length
proportional to the speed |ur| at its starting point and velocities set to zero inside
the plume. Arrows whose length is shorter than the size of the arrow head are not
shown. Stippling indicates regions where the local Richardson number Rig ≤ 1/4, with
Rig defined as in (1.9), indicating regions of the flow which are susceptible to shear
instability.

The circulation observed in figure 6.22 is consistent with the circulation described
by Lane (2008) and D18; propagating internal waves form vortices of alternating
signs, inducing a downward flow on some regions of the plume cap. The residual
circulation may enhance mixing by inducing shear instabilities via two pathways: either
by increasing the local shear rate or by reducing the local buoyancy gradient. We
note that regions with Rig ≤ 1/4 appear in the presence of downward flows, which
likely enhance the shear between the plume and environment, and upward flows, which
likely act to reduce the buoyancy gradient by separating buoyancy contours – note the
left side of the plume cap in figure 6.22(c) and the right side in figure 6.22(i). The
same behaviour is observed in simulation weak_shear despite slight asymmetries in
the internal wave (and therefore vortical) response. The regions susceptible to shear
instability are larger in weak_shear due to the presence of a weak mean flow. The
location of these regions appears consistent with the regions of moderate χ in the
environment above the plume in figure 6.18(a) and the slight increase in ⟨χ⟩plume in
figure 6.17(b).

As shown in figure 6.23, the vortical response is more complex in simulations
shear and strong_shear where the internal wave and vortical response is approx-
imately stationary. Regions susceptible to shear instability extend further into the
environment. The formation of a hydraulic jump-like feature in simulation shear noted
earlier appears consistent with the formation of a stationary vortex downstream of
the plume cap, where Rig ≤ 1/4, which recirculates the flow and produces a strong
downward flow on the plume cap that acts to enhance mixing (see figure 6.18). Re-
adjustment of the perturbed flow downstream acts to lift up the far end of the intrusion.
Note that the time when the recirculating vortex is strongest coincides with the peak
in ⟨χ⟩plume in figure 6.17. The regimes in which a hydraulic jump forms can be deduced
by defining a Froude number Fr in terms of the mean-flow velocity U at the obstacle
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Fig. 6.22 x-z cross-sections of simulations control and weak_shear at t = 5, 7.5, 10, 12.5, 15 s
showing the residual vorticity ζr (colour, symmetric log scale) and the residual circulation
ur (green arrows). Arrow length is proportional to the speed at the start point. The
velocities are set to zero within the black line which indicates the plume contour ϕp = 10−3.
Hatching indicates regions where the local Richardson number Rig ≤ 1/4, meaning the flow
is susceptible to shear instability.
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Fig. 6.23 As in figure 6.22, for simulations shear and strong_shear.
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Fig. 6.24 Top-down view of the plume (where ϕp ≥ 10−3) in simulation strong_shear,
showing (a) temperature T , (b) water vapour concentration ϕv, (c) ice concentration ϕc, and
(d) height z on the top surface of the plume at the end of the simulation, t = tend s. The axes
are centered on the plume centreline xc = yc = Lh/2.

height h,
Fr = U

N0h
= λzmax

N0zmax
= λ

N0
(6.11)

where h is chosen to be the maximum penetration height zmax (Homeyer et al., 2017;
O’Neill et al., 2021). A hydraulic jump is expected to form when the flow is ‘supercritical’
with Fr > 1, though 2D modelling and observations have shown that they may form
when Fr ≳ 0.4 (Durran, 1986). In simulation shear, Fr = 0.5. The vortical structure
and residual circulation in simulation strong_shear appears different to simulation
shear since the downward flow forms over the downstream end of the intrusion rather
than the plume cap. This suggests simulation shear lies in a critical range of shear rates
where a standing gravity wave structure forms just downstream of the plume cap, rather
than far downstream over the intrusion. Nonetheless, in simulation strong_shear the
downward flow results in a horizontally extended region where shear instabilities may
form owing to the increased local shear rate. The observation of KH-like structures
in the intrusion at t = 10 s coincides with the region where Rig ≤ 1

4 . However, the
enhanced buoyancy gradient from the downward flow appears to limit the amplitude of
the KH structure from t ≈ 10 s onwards, a process which has been noted in idealised
simulations of stratified shear flows (VanDine et al., 2021).
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To conclude our assessment of the internal wave response to convective penetration
in the presence of large-scale shear, we address the link between internal wave breaking
and large vertical displacements in the stratified layer. In the TTL, observations of
‘remote’ hydration of the stratosphere occurring well above the maximum penetration
height of a convective overshoot have been linked with the formation of cirrus (ice)
clouds referred to as ‘jumping cirrus’ (Wang, 2004). Recall from § 5.2 that H10 examined
this phenomenon, suggesting that upward displacement of TTL air by internal wave
breaking results in in-situ formation of ice via adiabatic cooling, which is then mixed
into the subsaturated (and warmer) environment higher up in the TTL and TLS.

There is a distinction between the formation of jumping cirrus, which to a large
extent represents redistribution of moisture already present in the TTL, and direct
injection of water vapour into the stratosphere via turbulent mixing between an
overshoot and the surrounding TTL environment. Direct injection and mixing of
moisture into the TTL is linked with ‘above-anvil cirrus plumes’ (AACPs), where
moist regions that resemble chimney plumes extend downstream of overshooting
tops (Homeyer et al., 2017). AACPs have been linked with severe weather at the
surface and are often associated with a ‘cold U / warm centre’ structure in satellite
observations (Luderer et al., 2007). The warm centre indicates air that has mixed
with the stratosphere and become warmer, forming a plume of moist air well above
the thunderstorm ‘anvil’ that forms at the tropopause from parts of the cloud that
are not energetic enough to penetrate into the stratosphere (Homeyer, 2014). The
penetrating plume in our simulations essentially represent these AACPs. In the presence
of shear, the ‘warm centre’ structure is evident: figure 6.24 shows a top-down view of
strong_shear, showing the temperature, vapour and ice concentration, and vertical
height on the top surface of the plume. Warm regions form at the top of the plume due
to mixing with the warmer environment, forming moist regions that extend downstream
of the overshooting plume cap.

Our simulations have shown that penetration of the plume significantly perturbs
the surrounding environment which can result in vertical displacement of fluid away
from the plume, either directly (e.g. when the plume collapses) or indirectly (e.g. from
propagating internal waves). Crucially, there is a mechanism for these displacements
to occur without internal wave breaking, which only occurs due to the presence of
large-scale vertical shear in simulations shear and strong_shear. We are therefore
motivated to explore whether internal wave breaking is necessary for the formation of
jumping cirrus. Whilst in-situ formation of ice cannot occur in our model due to the dry
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Fig. 6.25 x-z cross-sections through the plume centreline of the initial height tracer perturba-
tion ϕh(x, t) − ϕh(x, 0) in simulations control, weak_shear, shear, and strong_shear. For
each simulation, the time shown is when the positive initial height perturbation is maximised.
The location where this maximum is achieved is shown by a red dot with a white outline.

environment, we test the underlying assumption that large vertical displacements are
related to gravity wave breaking by comparing these displacements in the control and
varied shear simulations.

Motivated by the analysis reported by H10, the control and varied shear simulations
include an additional passive ‘initial height’ tracer ϕh which obeys the same governing
equation (5.25) as ϕp but with no diffusion and with initial condition

ϕh(x, t0) = z, (6.12)

with ϕh fixed on the top and bottom boundary. Thus at any time t, the vertical
displacement of a fluid parcel is ϕh(x, t) − ϕh(x, t0) with positive values indicating
downward displacement and vice versa. We use this analytical method to explore
the differences in vertical displacements of fluid parcels in the control and varied
shear simulations. In particular, we ask whether the displacements are solely a gravity
wave effect or whether large vertical displacements can arise simply from the dynamics
associated with convective penetration.
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Figure 6.25 shows perturbation of the initial height tracer ϕh at the time in each
simulation where the downward vertical displacement is maximised. We choose to
maximise the downward displacement because the largest upward displacements occur
within the plume. Note from H10 that jumping cirrus was attributed to co-located
upward and downward vertical displacements, representing the bringing together of
air from the upper TTL with air in the lower TTL. In our simulations, the location
where the maximum in ϕh − ϕh(t = 0) is attained – shown with a red dot in each
simulation – occurs close to the plume and during collapse of the overshoot, which
acts to draw fluid parcels down from higher in the stratified environment. This air
may then mix with moist fluid in the plume and, as the environment relaxes and
these parcels ascend towards their initial heights, ice could be formed via adiabatic
cooling. Note we do not observe this process explicitly because the environment is
dry, so the small amounts of vapour mixed into these parcels is not sufficient to bring
the parcels close to saturation. However, if the environment had some initial moisture
profile then in-situ formation of ice could occur, consistent with H10. Crucially, we
find that the maximum downward displacements are of a similar magnitude in all
simulations, though upward displacements are stronger at the downstream end of the
intrusion in simulation shear and above the plume cap in strong_shear. In these
simulations with RSH ≳ 1 the largest downward displacement coincides with regions
where the residual circulation shown in figure 6.22 is strongest, whilst in simulations
control and weak_shear with RSH < 1 the largest downward displacement occurs
atop the plume cap at the onset of, or during, the collapsing stage of the flow evolution.
Although strong downward displacements can be seen in the environment well above
the plume in simulation strong_shear, the signal is noisy and transient meaning it is
difficult to ascertain whether the displacements – which are likely a result of turbulence
forced by breaking internal waves – could transport fluid parcels close enough to the
plume to pick up moisture. These results suggest that perturbation of the surrounding
environment by the penetrating plume plays as much of a role in creating large vertical
displacements in the environment as wave breaking in the presence of vertical shear.

6.7 Discussion and conclusions

We have used a minimal moisture model that represents conversion between two forms of
moisture, vapour and ice, and sedimentation of ice at a fixed velocity. Using simulations
at the lab scale we explored the interaction between turbulent mixing, sedimentation,
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convective intensity, and large-scale vertical shear in convective hydration of a stratified
layer. Simulation parameters were chosen to be representative of the TTL. This study
is analogous to numerical studies of convective overshoots in the literature (Dauhut
et al., 2018; Hassim and Lane, 2010; Sang et al., 2018), with the added advantage of
using a model that allows exploration of a wide range of regimes, direct control of
microphysical processes such as the strength of sedimentation, and reduced sensitivity
to the representation of sub-grid-scale turbulence. The use of a minimal model that
retains only the essential processes also aids interpretation of the results.

We explored the competition between sedimentation, which acts to remove ice from
the plume, and mixing, which acts to convert ice to vapour, by varying the sedimentation
velocity. The results are summarised in figure 6.7. When sedimentation is weak,
observed vapour concentrations are consistent with the environmental temperature at
the equilibrium height z = zn where plume fluid settles at late times. This means that
vapour concentrations can be predicted based on dynamics alone, with no knowledge
of the mixing that occurs between the plume and environment, by measuring the
equilibrium height. Mixing with buoyant fluid surrounding the plume acts to raise the
equilibrium height above the height that would be predicted based on the buoyancy in
the plume at penetration. Thus measurement of zn encapsulates the effect of mixing
on buoyancy in the plume. However, when the sedimentation velocity is close to or
stronger than the typical turbulent vertical velocity in the plume then ice settles out
before sublimation can occur in the mixed fluid, decreasing total hydration of the
stratified layer. This is linked to the result in chapter 3 that the mixing timescale is
longer than the dynamical timescale. In this case, observed vapour concentrations
can be predicted by measuring the maximum height that parcel trajectories reach,
where the minimum temperature is attained. At this temperature, all moisture in
excess of the saturation vapour concentration is in the form of ice which settles out of
the plume. Thus the final vapour concentrations are determined at this point of the
trajectory, though some further reduction in concentration occurs due to dilution via
further mixing with the dry environment.

The D18 hypothesis that increased convective intensity (and hence penetration
to a greater maximum height) results in increased hydration of the stratified layer
was explored by quadrupling the source integral buoyancy flux in the plume in each
simulation with varied sedimentation velocity. Our results confirm the D18 hypothesis;
for all values of ws, the total hydration is increased. The influence of sedimentation
is reduced as convective intensity increases (figure 6.12) since velocities in the plume
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become stronger and mixing becomes more intense, more effectively counteracting
sedimentation. Thus for a wider range of (weak) ws, the plume remains saturated at late
times so vapour concentrations are determined by the equilibrium height zn. Although
the plume accesses more buoyant environmental fluid when the convective intensity
is greater, the energetic efficiency of the mixing remains the same (figure 6.11). This
conclusion is perhaps expected since increasing F0 does not introduce any mechanisms
that could result in more energetically efficient mixing. However, a stronger plume is
warmer and results in more energetic turbulence, increasing the direct transport of
vapour into the stratified layer and allowing larger concentrations of ice to access the
most buoyant environmental fluid, thus enhancing vapour transport.

The influence of large-scale vertical shear on turbulent mixing and hydration of
the stratified layer was found to be strong, with significant differences in the spatial
distribution and intensity of mixing depending on the shear rate. Overall, transport of
water vapour increases with shear rate as a result of enhanced mixing (figure 6.14).
This supports the conclusion of Homeyer et al. (2017) that hydration is enhanced
when there are strong storm-relative winds, which promote gravity wave breaking, but
contrasts with the conclusion of S18. As the shear rate increases, a larger proportion of
the internal gravity wave spectrum generated by the plume is susceptible to breaking
at heights close to the plume (figure 6.20). In the absence of wave breaking when
the shear is weak (or absent), the alternating succession of vortices above the plume
enhances wind shear at the edge of the plume, resulting in shear instabilities that
enhance mixing (figure 6.22), consistent with Dauhut et al. (2018). When the shear
timescale is comparable to or stronger than the dynamical timescale of the plume,
the vortical response becomes stationary as internal waves can no longer propagate
upstream and the region of intense mixing between the plume and environment that is
typically found at the edge of the plume cap extends into the intrusion (figure 6.23). In
a critical range of shear rates, a vortex forms downstream of the plume cap (resembling
a hydraulic jump) which significantly enhances mixing in that region. This is consistent
with O’Neill et al. (2021) where hydraulic jumps were identified as a mechanism for
hydration of the extratropical stratosphere – note that our study is relevant to both the
tropics and extratropics, since the dynamical setup is similar, though hydration in the
tropics is more influential globally due to transport by the Brewer-Dobson circulation.
Above this range of shear rates, the large-scale flow lifts over the plume and induces a
downward flow on the intrusion, which supports the development of shear instabilities
at the top of the intrusion. These instabilities enhance turbulent mixing over a wide
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spatial region, though mixing appears to be more efficient in the aforementioned
recirculating regime where buoyancy contours are more significantly deformed and
intense mixing occurs throughout the intrusion (figure 6.17 and figure 6.19).

Whilst our results are consistent with the analogous studies by H10, S18 and D18 in
many respects, there are important differences, particularly with respect to the role of
vertical shear and gravity wave breaking. We found that large-scale shear increases net
hydration by enhancing mixing, which directly contrasts with S18 who concluded that
the role of shear is largely to modulate gravity wave amplitudes rather than influence
small-scale mixing. Our conclusions on the role of gravity wave breaking can also be
contrasted with S18 and H10; whilst wave breaking can be directly linked with enhanced
mixing in the strongest shear simulation, turbulent mixing is still enhanced in weaker
shear regimes when gravity wave breaking is less important. Similarly, turbulent mixing
plays an important role in convective hydration in the absence of any vertical shear,
when gravity wave breaking cannot occur. We therefore conclude that it is misleading
to attribute mixing to the effect of gravity wave breaking, since shear instabilities also
play a role, and in any case we found in chapter 3 that intense mixing in convective
penetration is largely a buoyancy-driven process. Another contrasting viewpoint from
our results is the complex interplay between dynamical and microphysical processes
even in our idealised setup. The studies by H10, S18, and others in the literature (e.g.
Homeyer et al. (2017); O’Neill et al. (2021)), seek to identify a dominant process that
controls net hydration. However, we have shown that there are modulating factors
that compete with one another in many different regimes, and it is not necessarily
that case that all convective overshoots in the TTL sit in a narrow regime where a
dominant process can be identified. For instance, as discussed in § 6.1, the range of
shear rates found in the TTL is vast and, when translated into the language of our
model, covers all of the RSH regimes we consider, where the mechanisms that lead to
enhanced mixing between the plume and environment vary significantly.





Chapter 7

Conclusions

7.1 Thesis summary

This thesis has explored turbulent mixing, tracer transport, and internal gravity wave
generation in convective penetration of a buoyant plume into a stably stratified layer.
This simple flow is interesting both as a fluid dynamical problem in itself and as an
idealised representation of a wide range of industrial and geophysical flows. Despite its
widespread relevance, the problem remains relatively understudied owing to practical
limitations in laboratory experiments and the need to resolve a wide range of scales
in numerical simulations. A particular motivation for this work is the relevance to
moisture transport by deep convective systems that overshoot the tropical cold point
tropopause (CPT), injecting potentially significant amounts of water vapour into the
stratosphere. As a gateway to the wider stratosphere, transport across the tropical
CPT can have significant impacts on the composition of the middle atmosphere and
consequently Earth’s climate. Water vapour is an especially powerful greenhouse gas
that has been linked to both stratospheric cooling and tropospheric warming on decadal
timescales (Forster and Shine, 2002; Solomon et al., 2010) and plays an important role
in the destruction of stratospheric ozone that prevents harmful UV radiation from
reaching Earth’s surface (Brasseur and Jacob, 2017). The contribution of convective
overshooting to the stratospheric water vapour budget is regarded as second order
relative to dehydration as air slowly ascends through the CPT, though there remains
uncertainty in estimates of this contribution. Open questions remain on the mixing,
transport and microphysical processes that drive hydration of the stratosphere and
the interaction between these processes. Improving our understanding of convective
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hydration of the stratosphere is essential for building parameterisations of its effect in
global climate models and refining estimates of the stratospheric water vapour budget
in a changing climate.

We use numerical simulations and theoretical analysis to understand the key
characteristics of mixing between the plume and stratified environment, and its effect
on the transport of passive tracers and simple representations of moisture. We also
gain insight into the generation of internal waves with a narrow band of frequencies in a
turbulent flow with a wide range of temporal and spatial scales, a ubiquitous problem in
stratified shear turbulence that holds relevance to the forcing of large-scale atmospheric
winds and small-scale ocean mixing. We use reduced order modelling of complex
geophysical problems, retaining only the essential aspects needed to understand the
fundamental dynamics and properties that influence the flow. Owing to the wide range
of scales in convective penetration, we use large-eddy simulations which parameterise
the effect of sub-grid-scale turbulence on the resolved flow. We simulate the flow at
‘laboratory’ scales, which reduces the separation between the lengthscale at which
energy is injected by the buoyant plume and the Kolmogorov scale at which energy is
dissipated by turbulence, reducing sensitivity to the chosen sub-grid-scale turbulence
model. Our lab scale results can be non-dimensionalised using characteristic length
and time scales and interpreted in the context of chosen dimensional scalings. The
numerical setup is detailed in chapter 2 and validated in § 2.3 using integral plume
theory and comparison with direct numerical simulations of buoyant plumes (Craske
and van Reeuwijk, 2015; Van Reeuwijk et al., 2016) that resolve the smallest turbulent
scales in the flow.

Chapter 3 addressed turbulent mixing in convective penetration. We derived a novel
diagnostic framework, the buoyancy-tracer volume distribution, to quantify irreversible
diapycnal transport of a passive tracer. This builds on previous joint probability
density functions used in studies of mixing in idealised flows (Penney et al., 2020)
and the atmosphere (Plumb, 2007). Using this formalism, in § 3.3 we developed a
method for objectively partitioning buoyancy-tracer phase space into three regions
that correspond with distinct stages of mixing in a quasi-steady state. In this state,
undiluted plume fluid penetrates into the stratified layer and remains shielded from
the surrounding environment by a radial intrusion. Plume fluid overturns near the
maximum penetration height and mixes with the environment. Mixing continues as
fluid subsides, accumulates, and homogenises in the intrusion. As the plume cap
impinges on the significantly more buoyant environment, intense buoyancy gradients
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are established in a thin layer at the top of the plume where the mixing is most
energetically efficient. We also found that mixing is slow relative to the time taken
for fluid parcels to reach the top of the plume and subside into the intrusion, meaning
mixing with the most buoyant environmental fluid occurs only for a limited time. The
proportion of the total plume volume in each stage of mixing changes over time and in
§ 3.4 we found that the statistics that quantify turbulence, mixing, and entrainment
vary significantly between each stage. Consequently, parameterisations that seek to
represent mixing in convective penetration by prescribing average mixing statistics
for the whole plume must account for the time dependence and significant spatial
inhomogeneity. The net effect of mixing is to raise the equilibrium height (where
mixed fluid settles) above that which would be predicted based on properties of the
plume at penetration by increasing the buoyancy of plume fluid. This is strongly
dependent on the maximum penetration height, which determines the largest accessible
environmental buoyancy, and the length of time that the plume cap spends close to
this height.

In chapter 4 we explored the generation mechanism and spectral properties of
internal waves in convective penetration. In previous laboratory experiments (Ansong
and Sutherland, 2010) it was found that oscillation of the interface between the plume
and environment cannot explain the observed spectrum of internal gravity waves that
propagate upwards and outwards from the plume cap. Using numerical simulations
where the squared buoyancy frequency N2

0 ranges over two orders of magnitude,
we confirmed this observation and showed that the characteristic wave frequency
ωc ≈ 0.9N0 is an approximately constant fraction of N0 whilst the characteristic
horizontal wavenumber scales as N1/2

0 . To explain the observation of waves with a
narrow-banded frequency and wavenumber spectrum in a flow with a broad-banded
axisymmetric turbulence spectrum, in § 4.4.2 we modified a linear viscous decay model
(Taylor and Sarkar, 2007) for the axisymmetric wave geometry of this flow. Despite the
assumption of a slowly-varying background and neglect of any mean flow, the model
accurately predicts the decay in spectral power and selection of high frequencies close
to N0 when initialised from a spectrum taken at the top of but within the turbulent
plume, assuming a virtual source close to the height of the intrusion. However, the
predicted decay of low frequencies is not as strong as observed, which may be a result of
neglecting non-propagating modes, non-linear effects, or breakdown of the underlying
slowly-varying assumption. In § 4.4.3 we used dynamic mode decomposition and
ray theory to trace internal wave beams from the stratified environment into the
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plume, thus presenting the first evidence that internal waves may be generated by the
turbulent flow inside the plume cap. In § 4.5 we compared the spectral properties of a
buoyant plume penetrating into a stratified layer with a structurally similar flow where
the stratified layer is replaced by a (more buoyant) uniform layer, such that waves
are not generated by penetration of the plume. The same axisymmetric turbulence
was observed within the plume and an evanescent wave signal was identified in the
weak stratification that forms surrounding the plume cap, supporting our conclusion
that waves are generated by turbulence within the plume and modulated as they
propagate into the environment. Recent studies have demonstrated this conclusion
in the ‘scouring’ regime where the stratification is sufficiently strong that convective
plumes impinge upon and scour the base of the stratified layer but do not penetrate
the interface (Couston et al., 2018; Lecoanet et al., 2015). The analytic method applied
to the scouring regime is not applicable to the weakly stratified ‘penetrative’ regime
we consider because the turbulence and wave spectrum overlap. However, we found
that our most strongly stratified simulations with N2

0 = 103 s−2 had a vertical wave
energy flux consistent with theoretical predictions for the scouring regime, indicating
that a transition between the penetrative regime and the scouring regime occurs as
the stratification strength increases (with F0 fixed).

In chapters 5 and 6 we focus attention on convective hydration of the TTL. In § 5.3
we formulate a minimal moisture model that retains only the essential microphysical
processes involved in hydration of the TTL. The cold environment means only two
moist species need to be considered: vapour and ice. The low humidity in the TTL also
means latent heating can be neglected. Three microphysical processes are represented:
condensation of vapour into ice, sublimation of ice into vapour, and sedimentation of ice
at a fixed velocity. We use simple functional forms inspired by Hernandez-Duenas et al.
(2013) to represent these processes and use a Boussinesq representation of temperature
derived following Vallis et al. (2019). The regime where most ice condenses during
ascent is representative of the hydration mechanism in the TTL (see § 5.4). In § 5.5
we used a moist variation of the buoyancy-tracer volume distribution formalism from
chapter 3 to explain this hydration mechanism in convective hydration of a stratified
layer. Mixing between the plume and environment transports the significant ice content
of the plume to larger buoyancies where the saturation vapour concentration is larger.
This allows sublimation of ice, forming pockets of vapour that later accumulate in the
intrusion. Plume fluid tends to remain saturated throughout the flow evolution because
ice is abundant. Sedimentation has a strong effect on the total hydration. During
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ascent, ice remains in suspension owing to the strong updraft velocity and turbulent
vertical velocity. Once fluid overturns near zmax, turbulent eddies weaken and the flow
becomes predominantly horizontal, allowing ice to sediment out of the plume.

In chapter 6 we investigate the interaction between turbulent mixing, transport,
microphysics, and large-scale vertical shear in convective hydration of a stably stratified
layer. We use the model regime where the plume is loaded with ice at penetration.
Unlike previous model studies that use comprehensive microphysical models and
complex meteorological setups that are computationally expensive to simulate, we are
able to explore a broader parameter space for the sacrifice of some realism using an
idealised flow with a minimal moisture model. We consider controlled experiments
where the sedimentation velocity, buoyant plume forcing, and large-scale shear rate in
the stratified layer are varied to produce regimes where each process is weak, influential,
or dominant relative to characteristic quantities in the plume.

The experiment with varied sedimentation velocity in § 6.4 captures the competition
between sedimentation and mixing in controlling total hydration; strong sedimentation
acts to remove ice from the plume before it can mix with the warm environment
and sublimate to form vapour. A key result of this experiment is that hydration
largely depends on the relative sizes of the sedimentation velocity and the typical
turbulent vertical velocity. This suggests that given a more realistic size distribution
of ice crystals, those with strong sedimentation velocities can be disregarded when
determining the hydrating effect of a convective overshoot. In § 6.4.2 we show that
semi-quantitative models based only on dynamics can predict the distribution of vapour
concentrations in the plume at late times given knowledge of the sedimentation regime.
When sedimentation dominates, the vapour concentration of a fluid parcel is determined
by the minimum temperature reached along its trajectory, since ice is rapidly lost
once vapour condenses. On the other hand, when turbulent velocities in the plume
dominate sedimentation then ice remains in suspension so the plume remains saturated
throughout its evolution. Thus the final vapour concentrations are determined by the
environmental temperature at the height z = zn where mixed fluid settles. Measuring
the height zn essentially captures the effect of mixing in making plume fluid more
buoyant.

In § 6.5 we found that quadrupling the source buoyancy flux results in a plume
that is warmer and penetrates higher, so mixing between the plume and environment
is more effective at raising the buoyancy of plume fluid. Thus more ice is sublimated
and the total hydration is increased. This confirms the hypothesis by Dauhut et al.
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(2018) that maximum penetration height, which is controlled by the convective forcing,
directly influences hydration by allowing access to more buoyant environmental fluid.
Although increasing the convective intensity results in more energetic turbulence within
the plume and more mixing as a result of a larger energy input, the mixing efficiency is
unchanged. Semi-quantitative models capture the increase in hydration because mixing
with the warmer environment raises zn further. Stronger turbulent velocities in the
plume mean that mixing dominates sedimentation over a wider range of sedimentation
velocities.

The presence of large-scale vertical shear has a strong influence on the internal wave
and vortical response to convective penetration which acts to enhance turbulent mixing
and consequently increase the total hydration. The mean flow significantly deforms
the plume cap and leads to formation of a downstream intrusion. Shear instabilities
generated at the edge of plume intensify mixing with the environment, raising the
temperature of mixed fluid further and thus allowing larger vapour concentrations. As
the shear rate increases, a larger portion of the internal wave spectrum encounters a
critical layer close to the plume, resulting in wave breaking which generates turbulence
and further enhances mixing. The vortical response associated with internal waves also
enhances mixing by inducing a residual circulation onto the intrusion that promotes
shear instabilities. In a critical range of shear rates, the vortical response resembles
a hydraulic jump. In this range, turbulent mixing (indicated by increased values of
χ) becomes more widespread in the downstream intrusion without a corresponding
increase in TKE dissipation, thus enhancing the mixing efficiency. Changes to the
mixing efficiency are not monotonically related to changes in the total hydration,
suggesting it is not a useful measure in this context and it is instead more valuable
to consider the PE dissipation χ which more directly quantifies mixing. The primary
mechanism for hydrating the stratified layer in all cases is the mixing of ice-rich plume
fluid with warmer environmental fluid, resulting in sublimation of ice. Mixing between
the plume and environment can be enhanced via several mechanisms. Importantly,
although wave breaking plays a role in generating turbulence, it is not the primary
driver of mixing between the plume and environment and does not appear to be directly
related to vertical displacements in the environment that can lead to the formation
of cirrus clouds well above convective overshoots. Overall this study shows that a
systematic exploration of a simplified framework where only the essential physics is
retained is a valuable and insightful approach to understanding convective hydration.



7.2 Future directions & outlook 209

7.2 Future directions & outlook

This thesis has contributed to the understanding of turbulent mixing and internal wave
generation in convective penetration of a stably stratified layer and the interaction
between processes relevant to convective hydration of the lower stratosphere. Here we
discuss aspects of this thesis that could be extended in future research and we highlight
open questions.

Firstly, the approach to understanding mixing in this thesis has focused on use
of the volume distribution formalism introduced in chapter 3 that translates mixing
from physical to phase space. It would be interesting to also explore the problem of
convective penetration from an energetic perspective. Whilst we have considered mixing
efficiency, which quantifies the fraction of dissipated energy that results in mixing, it
would be valuable to quantify the energetic effects of turbulent mixing and radiated
internal waves directly. One approach is to use the framework presented by Winters
et al. (1995) which describes the conversion between APE, BPE, kinetic, internal and
external energy using the z∗ formalism, which uses an adiabatic redistribution of the
buoyancy field to calculate BPE directly.

The results presented in chapter 6, using the minimal moisture model formulated in
chapter 5, motivate further extension of the simplified framework used to understand
convective hydration of the TTL. Having established the interaction between mixing,
transport, and simplified microphysical processes in the model, it would be valuable to
explore more complex parameterisations of moisture. This acts both to validate the
choices made in formulating our model and may also further elucidate the essential
processes involved in hydration of the stratosphere. Examples of more complex
parameterisations include modifying the sedimentation velocity ws to vary based on a
representation of the size of ice crystals. The distinction between ice concentration and
crystal size is potentially important (Sang et al., 2018) because of different settling rates
based on size; a crude model would be to assume that larger concentrations correspond
with more large ice crystals which sediment faster, so that ws is a function of ϕc. An
important assumption in our model is that condensation and sublimation operate on
the same timescale τm, whereas other examples of idealised moist parameterisations
allow the rate of conversion of ice into vapour to depend on the ice concentration
(Hernandez-Duenas et al., 2013). To validate this assumption, and to introduce a
potentially interesting new aspect to the microphysics, we could allow condensation
and sublimation to have different timescales. This is likely to influence the competition
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between sedimentation and mixing in hydrating the TTL as discussed in § 6.4. To link
our simplified framework with examples of convective overshooting in the atmosphere
more directly, the environmental setup could be modified to use representative profiles
of atmospheric soundings used in more complex numerical studies. For example, Sang
et al. (2018) use a wind shear profile where vertical shear is present only in a 2 km deep
layer near the overshooting top. More complex velocity profiles in the environment
are likely to influence gravity wave breaking and modify the vortical response that
enhances mixing in the presence of shear. Another simple extension is to prescribe
a background humidity profile in the stratified environment. This would allow a
more detailed investigation of the link between in-situ formation of cirrus clouds (i.e.
jumping cirrus) and vertical displacements caused by the penetrating plume or gravity
wave breaking. A more nuanced addition to our model would be a representation of
supersaturation. Hassim and Lane (2010) showed that convective penetration can
lead to a dehydration of the stratosphere when the environment is supersaturated, an
aspect we chose not to address – though an important question is how often these
conditions actually occur in the TTL. It may be possible to allow this in our model
simply by increasing the condensation timescale, but this would only allow transient
cases of supersaturation when the saturation concentration is reduced. Another simple
extension to allow supersaturation is to modify the saturation concentration ϕvs to
ϕvs(1 + γ) in the vapour/ice conversion rate E , where 0 < γ ≪ 1, which emulates
‘spontaneous nucleation’ well above the saturation concentration.

The work in this thesis could be extended to address parameterisations of moisture
transport by convective overshoots in the TTL in climate models. At present, climate
models rely on bulk parameterisations which may not accurately represent small-scale
turbulent mixing and do not account for the significant spatial inhomogeneity of this
mixing as well as its time dependence as highlighted in § 3.4. In § 6.4 we showed
that semi-quantitative models based on dynamics alone can be used to estimate the
distribution of vapour concentrations given knowledge of the strength of sedimentation
relative to turbulent velocities in the plume. Given an estimate of the vertical flux
of moisture in the plume, these models could be extended to estimate net hydration
of the TTL. Such a model would not require detailed knowledge of the mixing that
occurs between the plume and environment, providing motivation that simple param-
eterisations of the influence of convective overshooting are possible. However, these
models do rely on estimates of the dynamics, namely the minimum temperature along
parcel trajectories and the equilibrium height of the intrusion. Minimum temperatures
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could be estimated given knowledge of the maximum penetration height. The problem
therefore reduces to estimating zmax and zn. Although experimental studies have
shown that these heights scale with the source integral buoyancy flux and stratification
strength, it is not clear how this may extend to more complex environmental stability
profiles. Energetic principles could be used to estimate zmax, since the maximum
height is largely determined by the excess kinetic energy at penetration (Debugne
and Hunt, 2016). However, a model for zn must encapsulate the effect of mixing in
raising the buoyancy of plume fluid parcels and this remains an open problem. The
buoyancy-tracer volume distribution introduced in chapter 3 could act as a useful
framework for prescribing idealised versions of the source and mixing flux distributions
and exploring the evolution of the volume distribution.

In chapter 4 we showed that internal waves generated by convective penetration
can be traced from the stratified environment back into the plume, concluding that
internal waves are generated by turbulence in the plume cap. A complete theory
for this generation mechanism remains an open problem. As noted in § 4.6, studies
of a strongly stratified regime where convective plumes do not penetrate into an
adjacent stratified layer have shown that turbulent Reynolds’ stresses can explain the
observed wave spectrum by acting as non-linear forcing to a wave equation. However,
the theoretical approach in these studies relies on a separation of scales between the
waves and turbulence which is not applicable to the penetrative regime we consider
because the wave and turbulence spectra overlap. We briefly considered a two-layer
flow that was designed to be structurally similar to the stratified simulations but
without internal waves. By exploring differences between the two flows, we aimed to
identify any structural differences that arise from the presence of internal waves in one
flow but not the other. An evanescent wave pattern was found in a weakly stratified
layer surrounding the two-layer plume cap, that suggests the same wave generation
processes occur inside the turbulent plume cap and the waves become evanescent as
they propagate out of the plume cap. This can be explored further using the viscous
model modified from Taylor and Sarkar (2007). Using decaying modes instead of
propagating wave modes would lead to a similar equation predicting amplitude decay
that could be compared with the observed wave amplitudes to determine if the same
processes are at play. Given the analogous setup, analytical theory on internal wave
tunnelling may also shed light on decay of the wave signal and energy reflection from
the sudden change in stratification from the weakly stratified plume to the uniform
environment (Sutherland and Yewchuk, 2004).
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Although beyond the scope of this thesis, it is an open question whether the
spectral properties of internal waves identified in § 4.4 can be identified in observations
of the gravity wave spectrum in the lower stratosphere. There is some evidence
that our results should translate; Lane and Reeder (2001) found that numerical
simulations of deep tropical convection generated gravity waves with a peak frequency
close to the buoyancy frequency of the surrounding environment. As observations
of gravity waves in the upper troposphere and lower stratosphere improve, it may
become feasible to link observed spectra with idealised model studies such as ours more
closely. In a broader sense, this work intersects with the study of stratified turbulence
and internal wave dynamics, which are crucial in both atmospheric and oceanic
settings. We have identified spectral properties of internal waves over a wide range
of stratification strengths. The demonstration that internal waves may be generated
by turbulence within the plume, rather than at the interface between the plume and
environment, challenges existing assumptions on internal wave theory. This insight
has potential applications in improving gravity wave parameterisations in weather and
climate models by linking the wave spectrum with the resolved environmental stability
profile. Parameterisations of convectively-generated gravity waves tend to identify the
momentum flux given environmental conditions – exploring the dependence of results
in chapter 4 on the source buoyancy flux F0 would represent an important step towards
improving these parameterisations.

Finally, the influence of internal gravity wave breaking on the generation of tur-
bulence and mixing in convective hydration of the TTL remains an important open
question. Practical limitations meant we were not able to explore the spectral properties
of internal waves generated by convective penetration in the presence of shear, but
this may have a significant impact on the spectrum of gravity waves generated by deep
convection that can influence mean atmospheric winds such as the QBO which is not
currently represented in parameterisations. Moreover, our results have shown pathways
for wave breaking to enhance hydration but importantly we do not consider wave
breaking to be the essential underlying mechanism at play, in contrast with several
numerical studies of the atmospheric problem (Hassim and Lane, 2010; Homeyer et al.,
2017; O’Neill et al., 2021; Wang, 2003; Wang et al., 2016). Similarly, there remains
scope for a clearer understanding of the formation and importance of jumping cirrus
above deep convection. It remains unclear whether jumping cirrus is a result of the
redistribution of moisture within the TTL, or represents an extension of the direct
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injection of moisture by convective overshoots as a result of bringing together air in
the upper TTL with moistened air lower in the TTL.
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