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Inspired by laboratory experiments showing internal waves generated by a plume
impinging upon a stratified fluid layer (Ansong & Sutherland. 2010 J. Fluid Mech.
648, 405–434), we perform large eddy simulations in three dimensions to examine the
structure and source of internal waves emanating from the top of a plume that rises
vertically into stratification whose strength ranges over two orders of magnitude between
different simulations. Provided the plume is sufficiently energetic to penetrate into the
stratified layer, internal waves are generated with frequencies in a relatively narrow band
moderately smaller than the buoyancy frequency. Through adaptations of ray theory
including viscosity and use of dynamic mode decomposition, we show that the waves
originate from within the turbulent flow rather than at the turbulent/non-turbulent interface
between the fountain top and the surrounding stratified fluid.

Key words: plumes/thermals, internal waves, wave–turbulence interactions

1. Introduction
Internal (gravity) waves propagate horizontally and vertically through stratified fluid
driven by buoyancy forces. Because they vertically transport horizontal momentum, they
can significantly influence atmospheric winds and, consequently, weather and climate.
The waves can be generated by a variety of processes, including flow over topography,
frontogenesis and convective storms (Fritts & Nastrom 1992). Of the last of these, internal
waves can be excited when the top of a convective system impinges upon the base of the
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Figure 1. Schematic showing simulation set-up (a) and initial buoyancy profile b0(z) (b). The stratification
begins at H = 0.2 m (black dashed line). The plume lies on the centreline x = y = L H /2 of the domain of
width L H = 1 m and height Lz = 0.6 m. The forcing (i.e. where fw, fb in (2.2), (2.3) are non-zero) occurs
below the blue dashed line. Sponge layers are shaded in grey. Internal waves are indicated by blue wavy lines
with wavevector k as shown. The flow within the plume is indicated by solid black arrows and structures
referred to in the text are labelled in red. The maximum penetration height zmax and quasi-steady-state height
zss , measured from the bottom of the stratified layer, are indicated by dotted lines.

stratosphere. In the absence of mean winds and heating within the body of the plume,
it has been proposed that internal waves can be excited by the vertically fluctuating
motion of the cloud tops (Fritts & Alexander 2003). This perspective was drawn into
question by laboratory experiments examining internal wave generation by a vertical
plume impinging upon a stratified fluid layer (Ansong & Sutherland (2010), henceforth
AS10). After penetrating into the stratified layer, the plume became negatively buoyant,
transforming into a fountain. That study showed that the frequency spectrum of internal
waves emanating from the plume/fountain was narrow and not related to the broad-
banded spectrum associated with fluctuations of the turbulent/non-turbulent interface of
the fountain top (corresponding with the cloud top in Fritts & Alexander (2003)).

Here we perform large eddy simulations (LES) of a plume impinging upon a stably
stratified fluid layer in order to gain insight into the mechanism for generation of narrow-
banded internal waves from broad-banded convective turbulent motion. Turbulent mixing
and entrainment properties of this flow have previously been considered in Powell, Haynes
& Taylor (2024). The numerical model is detailed in § 2. In § 3 we describe the flow and
compare the generated wavefield observed in a set of simulations in which the squared
buoyancy frequency of the stratified layer varies over two orders of magnitude. In § 4 we
focus on a high-resolution simulation and present analyses which demonstrate that waves
originate from within the fountain top rather than at the turbulent/non-turbulent interface.

2. Numerical model
We consider LES of a pure plume with source radius r0 generated near the bottom (z = 0)
and at the horizontal centre (x, y = L H/2) of a domain of height Lz and horizontal extent
L H , as shown in figure 1. Scales are chosen to be similar to those of the laboratory
experiments of AS10, such that r0 = 0.005 m, Lz = 0.6 m and L H = 1.0 m.

At the source, the generated plume has integral buoyancy flux F0 =
2

∫ ∞
0 〈w〉〈b〉|z=0 rdr , where 〈·〉 denotes a time and azimuthal average, w is the

vertical velocity and b is the buoyancy. In all simulations we take F0 = 5 × 10−6 m4 s−3.
The plume carries a passive tracer which is used to mark the extent of the plume
throughout each simulation. The density is uniform over the bottom H = 0.2 m of the
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Sim. name N 2
0 (s−2) r0 (m) F0 (m4 s−3) Nx × Ny × Nz t1 t2 �t Re (×107)

N0, N1, N2 1, 10, 100 0.005 5 × 10−6 512 × 512 × 257 2 8 0.02 2.2, 1.25, 0.71
HR 0.25 0.005 5 × 10−6 1024 × 1024 × 513 3 13 0.02 2.66

Table 1. Simulation and time window parameters. Here Nx , Ny and Nz are the number of grid cells in each
direction.

domain and uniformly stratified above with squared buoyancy frequency, N 2
0 , that ranges

from 1 to 100 s−2 in moderate-resolution simulations and is 0.25 s−2 in a high-resolution
simulation. Relevant simulation parameters are given in table 1. During penetration into
the stably stratified layer, the plume transforms into a fountain that excites internal waves
above, with the collapsing fluid from the fountain spreading laterally as an intrusion at
its neutral buoyancy level. To inhibit reflection of internal waves from the top boundary,
we include a sponge layer of depth L S = 0.1 m at the top of the domain (well above the
fountain top in each of the simulations) where the velocity is damped towards zero. We
also include a sponge layer of width L S on the four sides of the horizontally periodic
domain to prevent low-frequency internal waves with a shallow angle from wrapping
around the computational domain.

The simulations use the numerical method reported in Powell et al. (2024) which
is briefly summarised here. The Boussinesq Navier–Stokes equations are integrated
numerically using Fourier modes in the two periodic horizontal directions and second-
order finite differences in the vertical. The boundary conditions on the top and bottom
boundaries are no-stress and no-penetration. The full, filtered governing equations non-
dimensionalised by F0 and N0 and including subgrid-scale (SGS) contributions are

∇ · û = 0, (2.1)

Dû
Dt

+ ∇ p̂ = 1
Re

∇2û + b̂k̂ − ∇ · `+ fw k̂, (2.2)

Db̂

Dt
= 1

RePr
∇2b̂ − ∇ · λb + fb, (2.3)

where (̂·) indicates filtering at the resolved grid scale and k̂ is the unit vector in the
vertical direction. The terms fw and fb represent the forcing applied to generate the
buoyant plume, detailed in Powell et al. (2024). The SGS stress tensor ` and SGS scalar
flux λb are determined by the anisotropic minimum dissipation model, as detailed in
Vreugdenhil & Taylor (2018). The two dimensionless parameters are the Reynolds number
Re = F1/2

0 /
(
νN 1/2

0

)
and the Prandtl number Pr = ν/κ = 0.7, where ν is the molecular

viscosity and κ is the molecular diffusivity. Note that the wavelength of the dominant
internal waves that we analyse here is always much larger than the grid spacing. In all
regions of the domain, the LES captures the energy-containing scales, and the smallest
resolved motions contain comparatively little energy. We therefore conclude that using
LES to analyse the internal wavefield is justified. For details on verification of the
numerical scheme, including a resolution sensitivity test that showed the turbulent flow
is well represented at the resolution(s) used in this paper, we refer the reader to Powell
et al. (2024).

All simulations are first run until the plume front reaches the base of the stratified
layer, which we define to occur at time t = 0. Before beginning our analyses, the
wavefield is allowed to develop until time t1Tb, where Tb = 2π/N0 is the buoyancy period.
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Figure 2. Instantaneous x-z slices of w′ showing the internal wavefield in the stratified layer in simulations
HR, N0, N1 and N2 at t = 5 Tb. Horizontal dotted and dash-dotted lines indicates the height at which spectra
are calculated in figure 4. The passive tracer contour in black indicates the extent of the plume.

We then collect data at a fine temporal resolution �t Tb until time t2Tb. Values of the
non-dimensional quantities t1, t2 and �t for various simulations are listed in table 1.
Unless otherwise stated, analyses are performed on a spatial window excluding the sponge
layers and focused on the stratified layer: L S ≤ x, y ≤ L H − L S and H ≤ z ≤ Lz − L S .
Throughout this paper, perturbation components are calculated by subtracting a running
mean of the azimuthally averaged field over one buoyancy period Tb. The plume volume
flux is small and the large-scale flow reaches a quasi-steady-state in which the background
stratification and flow vary more slowly than the averaging period, motivating this choice.
Practical constraints mean that azimuthal averages are stored for the buoyancy and velocity
components only. Analyses are therefore restricted to using horizontal slices. Horizontal
averages are weighted by the radial distance from the plume centreline. Finally, note that
whilst (2.1)–(2.3) are stated in non-dimensional form, we state all values in dimensional
units henceforth to avoid confusion when varying N0.

3. Comparison of plume and wavefield evolution
In each simulation, the plume rises through the uniform layer and penetrates into the
stratified layer after approximately 3 s. The plume overturns at its maximum penetration
height above the bottom of the stratified layer, zmax ∝ F1/4

0 N−3/4
0 , once it becomes

relatively less buoyant than its surroundings, before transforming into a fountain and
forming a radially spreading intrusion at the neutral buoyancy height. The scaling for
zmax follows from dimensional analysis, has been verified in experiments (Briggs 1965),
and fits our simulation data with a proportionality constant 4.4 ± 0.2. A quasi-steady-
state is reached in which fluid is continuously supplied by the plume to the stratified layer
and spreads as an intrusion after mixing with the buoyant environment near the fountain
top (Powell et al. 2024), with mean steady-state height zss below zmax . We ensure that
this quasi-steady-state is reached before time t1Tb when fine-resolution data collection
begins. As noted in experimental studies, internal waves are not observed during rise to the
maximum penetration height (AS10), instead appearing once plume fluid first overturns.

Figure 2 shows instantaneous x-z slices through the plume centreline of the perturbation
vertical velocity w′ for all simulations and figure 3 shows horizontal slices at z = 0.5 m.
Snapshots are taken at t = 5 Tb, during quasi-steady-state. A contour of the passive tracer
field is shown to indicate the extent of the plume. The internal wavefield is evident, with
coherent wave beams propagating upwards and outwards in the ambient fluid above the
fountain top. The simulated internal waves are consistent with results presented in AS10.
Figure 4(a) shows the time-averaged vertical energy flux, Fwave = ∫ 〈wp〉 dA, computed
from a Fourier–Bessel decomposition of 〈w〉 as detailed in AS10. Our results with N 2

0 = 1
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Figure 3. Instantaneous horizontal slices of w′ showing concentric rings of the internal wavefield at z = 0.5 m
in simulations HR, N0, N1 and N2 at t = 5 Tb.
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Figure 4. Analyses of simulations HR, N0, N1 and N2 showing (a) time-averaged vertical energy flux,
Fwave, compared with the theoretical prediction of Couston et al. (2018) for a strongly stratified regime with
a stiff interface: Fwave ∼ (z − H)−13/8 (black dotted line), (b) total energy

∑
kh ,ω Eδkhδω at (z − H)/zmax =

0.25, 1.4 (crosses, circles), (c) normalised horizontal wavenumber spectrum fkh and (d) normalised frequency
spectrum fω at (z − H)/zmax = 1.4. Panel (e) compares the characteristic wave frequency ωc and the plume
forcing frequency ωplume.

(closest to the value used by AS10) show that Fwave ≈ O(10−7) throughout the stratified
layer, consistent with AS10 results. The dotted line shows the theoretical scaling for Fwave
derived by Couston et al. (2018) for waves generated by Reynolds stresses due to eddies
in an (isotropically) turbulent region below a very strongly stratified layer. Whilst there is
poor agreement in the weakly stratified cases, the N 2

0 = 100 case matches the predicted
scaling reasonably well in the far field.

Frequency and horizontal wavenumber spectra are calculated from the (kinetic)
energy density E(kh, ω; z) = (1/2)

∑
i |A(u′

i )|2, where A(u′
i )(ω, kh; z) are the 2-D fast

Fourier transform (FFT) amplitudes of each perturbation velocity component u′
i at

height z. We apply an energy-corrected Hann window before computing the time FFT.
The frequency spectrum is then fω(ω; z) = ∑

kh
Eδkh and the horizontal wavenumber

spectrum is fkh (kh; z) = ∑
ω Eδω where δkh and δω are the spacings in spectral

space. Figure 4(b) shows the total energy
∑

kh ,ω Eδkhδω above (within) the plume, at
(z − H)/zmax = 1.4 (0.25), indicated by crosses (circles). The two heights are indicated
by the dotted and dot-dashed lines in figure 2. The energy at heights inside the turbulent
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Figure 5. Frequency spectrum fω(ω; z) at a range of heights in simulation HR shown (a) at all heights on a
log–log scale, (b) within the plume and (c) above the plume. Dots indicate the raw spectrum which is smoothed
to give the solid lines. Note the different scale between (b) and (c). The heights at which spectra are calculated
are indicated by dashed coloured lines in (d), an instantaneous x-z snapshot of w′ at t = 5Tb with the same
colour bar as in figure 2. In (a), (b) and (c) the vertical dashed line indicates ω/N = 1.

plume is approximately two orders of magnitude larger than in the internal wavefield above
the plume. The separation in energy scales is similar for N 2

0 = 0.25, 1, 10 and decreases
when N 2

0 = 100.
Figures 4(c) and 4(d) show fkh and fω, respectively, above the plume at

(z − H)/zmax = 1.4. The characteristic horizontal wavenumber kh,c, calculated as a
power-weighted average from fkh , scales with N0 as kh,c ∝ N 0.5±0.05

0 . Thus the horizontal
wavelength of the wave beams decreases with N0, as is evident in figure 2. The frequency
spectra in figure 4(d) suggest that the characteristic wave frequency ωc, calculated as
a power-weighted average, remains approximately constant as a fraction of N0 with
0.6 < ωc/N0 < 1. This is consistent with experiments of the same set-up by AS10 which
found 0.4 < ωc/N0 < 0.9. The characteristic wave frequency is not related to the plume
forcing frequency. This is shown by comparing ωc with the characteristic frequency ωplume
of vertical fluctuations of the plume height around the quasi-steady-state height zss (not
shown). This comparison is shown in figure 4(e) and is consistent with AS10, showing
no clear relation between the approximately fixed ωc/N0 and the varying ωplume. The
question therefore remains: What determines the wave frequency spectrum?

4. Analyses
We now focus on analyses of the high-resolution simulation with N 2

0 = 0.25 s−2, for which
the fountain top reaches a steady-state height of zss � 0.38 m.

4.1. Spectral analysis
Figure 5 shows the frequency spectrum fω at a range of heights within and above
the plume. The raw spectrum is shown as coloured dots and smoothed in frequency
space to give the coloured lines. The frequency axis is normalised by the time and
horizontally averaged stratification strength N (z), where N (z) = N0 sufficiently far above
the fountain (see § 4.2). There is a sharp increase in the stratification strength at the
fountain top where intense buoyancy gradients are established between the plume and
the more buoyant environment (Powell et al. 2024), whilst the stratification is weaker deep
inside the plume. Internal waves can propagate locally where 0 < ω/N (z) < 1. Within
the plume (z ≤ 0.38 m, figure 5b), the frequency spectrum fω(ω; z) is broad and decays
with increasing frequency, as expected for turbulent flow. Above the plume (figure 5c), the
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Figure 6. (a) Horizontal wavenumber spectrum fkh (kh, z) at a range of heights in simulation HR, compared
with an isotropic and axisymmetric turbulence scaling k−5/3

h , k−3
h , shown as dashed and dot-dashed black

lines, respectively. Line colours as in figure 5. (b,c) Energy spectrum E at (z − H)/zmax = 0.25, 1.4. The
black dashed line indicates ω/N (z) = 1.

spectrum is narrow and peaks at approximately 0.7 ≤ ω/N ≤ 1. This is consistent with the
spectra in figure 4(b) and results in AS10. In figure 5(b) there is evidence of the spectrum
forming a peak at frequencies close to, but larger than, N (z) at heights z = 0.32, 0.36 m
in the fountain top.

Figure 6(a) shows the wavenumber spectrum fkh (kh, z) at a range of heights. The dashed
line shows an isotropic turbulence spectrum fkh ∼ k−5/3

h and the dot-dashed line shows
a 2-D (axisymmetric) turbulence spectrum fkh ∼ k−3

h . The axisymmetric scaling most
closely matches the observed spectra within the plume, consistent with direct numerical
simulation studies of plumes (e.g. van Reeuwijk et al. (2016)). Figures 6(b) and 6(c) show
the energy (density) spectrum E at (z − H)/zmax = 0.25 and 1.4, respectively, clearly
showing the broad structure within the plume and restriction to small wavenumbers and a
narrow frequency band above the plume.

4.2. Viscous internal wave model
Taylor & Sarkar (2007) (henceforth TS07) present a simple linear model to explain the
selection of a dominant range of frequencies in the spectrum of internal waves generated by
a turbulent Ekman layer. The method starts with known wave amplitudes A(w

′
)(ω, kh; z0)

computed from w′ at some initial height z0. Henceforth, we drop the superscript and
assume amplitudes are computed from w′. For § 4.2 only, we use an amplitude-corrected
Hann window instead of energy-corrected. The amplitudes Ã(ω, kh; z) at an arbitrary
height z are calculated based on the expected vertical propagation speed and viscous
decay rate, assuming that the waves satisfy the linear dispersion relation and that the
background fields are slowly varying in space and time. Here, following TS07, the
spectrum P(ω; z) is calculated from amplitudes A as P(ω; z) =

√∑
kh

A(ω, kh; z)2.
Compared with the original study, we move from a Cartesian to an axisymmetric wave
geometry, implicitly assuming that the curvature in the waves is small enough to be
approximated as plane waves. We account for the energy-conserving amplitude decrease
of a spreading axisymmetric wave beam from a virtual point source at height zs ≤ z0 with
a factor

√
r(z0)/r(z) = √

(z0 − zs)/(z − zs) where r(z) is the along-beam distance from
the virtual source to the waves at height z (Flynn, Onu & Sutherland 2003). In effect, zs is
an unknown that may be estimated by choosing the value that minimises the error between
predictions and observations. The predicted amplitude Ã(ω, kh; z) for a given frequency
ω and horizontal wavenumber kh at height z is then
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Figure 7. (a) Vertical profiles of time and horizontal average stratification strength N , time and horizontal
average within the plume N

plume
, time and azimuthal average 〈N 〉, background stratification N0, and two

profiles of the time-average N
t
(x, z) on the plume centreline x = 0.5 and at x = 0.4. (b) Vertical profiles of

time and horizontal average total viscosity νtot , time and horizontal average within the plume ν
plume
tot , and

molecular viscosity ν.

Ã(ω, kh; z)

A(ω, kh; z0)
= N (z0)

N (z)

√
z0 − zs

z − zs
exp

[
− k3

h

ω4

∫ z

z0

N
4
(z′)ν plume

tot (z′)
(

N
2
(z′) − ω2

)−1/2
dz′

]
,

(4.1)
where the total viscosity is the sum of the molecular and SGS viscosity, νtot = ν + νSGS ,
and ν

plume
tot is the time and horizontal average of νtot within the plume.

Figure 7 compares the full horizontal average with the plume average of the stratification
strength N and total viscosity νtot . Figure 7(a) also shows two profiles of the spatially
varying but time-averaged stratification strength N

t
(x, z), one on the plume centreline

and another at the edge of the plume cap. Points close to the plume centreline and near the
bottom of the stratified layer where (N

t
)2 < 0 are set to zero and the profile is smoothed

with a running mean. The amplitude prediction (4.1) uses the full horizontal average
N (z) since this more faithfully represents the stratification in the region away from the
centreline where the waves propagate outward – compare the dotted and dashed green
lines in figure 7. At heights within the plume, νtot is between two and three orders of
magnitude larger than the molecular viscosity ν, owing to strong turbulence, and limits
to ν in the ambient. For the total viscosity, the plume average appears to better reflect
the turbulent structure noted in Powell et al. (2024), with stronger/weaker turbulence in
the plume cap/intrusion, respectively. We therefore use the plume average ν

plume
tot in (4.1).

The results are qualitatively the same with the optimal choice of z0 and zs (see below)
when using νtot instead, but the plume average improves the prediction when z0 lies within
the plume.

As an example of applying the TS07 model, figure 8(a) shows the observed spectrum
P(ω; z0) at the initial height z0 = 0.36 m. Using this initial spectrum, the predicted
spectrum P̃(ω; z) at heights z = 0.4 and 0.48 m given a virtual source at zs = 0.32 m
are plotted as dashed lines in figure 8(b) and compared with the corresponding observed
spectrum at the two heights, plotted as solid lines. We compare predictions with
observations quantitatively by computing the mean squared error between them and
normalising by the mean of the squared observed spectrum. This normalised mean squared
error (NMSE) averaged over predictions at 0.44 m ≤ z ≤ 0.48 m every �z = 0.01 m is
plotted as a function of initial height, z0, in figure 8 for a range of virtual source heights
zs ≤ z0. For all values of zs , the error between predicted and observed waves well above
the fountain top is minimised if the initial observation height is z0 ≥ 0.36 m. This height
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Figure 8. Application of the viscous internal wave model from TS07 to simulation HR. Line colours as in
figure 5. (a) Observed spectrum P(ω; z0) at initial height z0 = 0.36 m. (b) Comparison of predicted spectrum
P̃(ω; z) (dashed line) and observed spectrum P(ω; z) (solid line) with virtual source height zs = 0.32 m at
z = 0.4 m and 0.48 m. (c) The NMSE between the predicted and observed spectrum, averaged over 0.44 m
≤ z ≤ 0.48 m, as a function of initial height z0 for a range of virtual source heights zs ≤ z0 (indicated in colour).

is close to, but below, the fountain top. The lowest error is achieved with virtual source
heights well within the fountain, around the height of the intrusion. Even with these
optimal parameters, as in figure 8(b), the viscous decay model does not perform as
well here as in TS07. In particular, whilst the model does capture the selection of high-
frequency waves and the overall decay in power is well represented, the shape of the
spectrum is poorly predicted, with the decay of intermediate frequencies underestimated.
It is noted by TS07 that the predicted shape is sensitive to the shape of the initial spectrum.
However, a key observation from (4.1) is that the maximum amplitude for a given height
z and horizontal wavenumber kh , assuming a fixed stratification and viscosity and a flat
initial spectrum, occurs at ω/N0 = √

4/5 ≈ 0.9 which is close to the peak in the observed
spectra seen in figures 5(c) and 8(b). Overall, this analysis gives an indication that waves
are generated within the body of the fountain, though their spectrum there is not clearly
established.

4.3. Dynamic mode decomposition and ray tracing
Motivated by the implication that internal waves are generated within the fountain, we
use the dynamic mode decomposition (DMD) method (Schmid 2010) to extract spatial
structures associated with internal wave frequencies 0 < ω/N0 < 1. We then use ray
tracing to identify coherent wave beams within these structures. Modal decomposition
has previously been used in similar problems; for example, Nidhan, Schmidt & Sarkar
(2022) use a flow decomposition technique to link wake-generated internal waves with
coherent turbulent structures. Later, it was shown that properties of these waves are
in close agreement with a linear theory similar to that used in § 4.2 (Gola, Nidhan &
Sarkar 2024). To apply DMD we construct a ‘data matrix’ X from snapshots of x-z
slices through the plume centreline, with four observables: the perturbation horizontal
velocity u′, buoyancy b′, vertical velocity w′ and out-of-plane vorticity ζy = ∂zu − ∂xw.
The capability to use multiple observables as input data lends itself to extracting wave
modes which are spatiotemporally coherent across all observables and reduces sensitivity
to noise. The snapshots are restricted to 0.3 m ≤ x ≤ 0.7 m and 0.24 m ≤ z ≤ 0.5 m to
avoid any transient signal from the front of the spreading intrusion. Each column of the
data matrix corresponds to a discrete time tk = k�T in the range t1 ≤ t/Tb ≤ t2 with
t1, t2 as given in table 1. A second matrix X′ is constructed by advancing each column
by one time step (and assuming periodicity, so that the last column becomes the first).
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Figure 9. Examples of DMD modes. Here, w′
DM D as defined in (4.2) is plotted. (a) Evanescent mode,

(b) turbulent mode and (c–e) internal wave modes. In (c–e), green dotted lines indicate the wave beam angle
θ = arccos(ω j /N0) derived from the mode frequency ω j .

The ‘exact DMD’ algorithm computes the eigendecomposition of the linear operator A
which advances X to X′ ≈ AX. The decomposition yields eigenvalues whose imaginary
part represents the temporal frequency ω j of mode j and whose real part represents
the growth rate (which is close to zero here). The spatial structure of each observable i
associated with mode j is given by the eigenvectors Φ

(i)
j and amplitudes A j , which come

in complex conjugate pairs for real input data. The spatial structure of w′ (for example) in
mode j with conjugate mode j∗ is

w′
DM D(ω j ) = Re

[
A jΦ

w
′

j +A j∗Φ
w

′
j∗

]
. (4.2)

The spatial structure of the DMD modes determined from simulation HR is summarised
in figure 9. The modes can be broadly categorised into three types: internal wave
modes with 0 < ω j/N0 < 1, evanescent wave modes with ω j/N0 � 1 and turbulent modes
with ω j/N0 � 1. For the internal wave modes shown, we use the polarisation relation
ω = N0 cos θ to plot dotted lines with the wave beam angle expected from the mode
frequency. The close agreement with the phase lines demonstrates that these DMD modes
successfully capture internal waves matching the mode frequency.

We now use ray tracing to examine whether the time-periodic structures determined
by the DMD analysis can be interpreted as internal wave beams originating from within
the fountain. Linear ray theory implicitly assumes slowly varying background fields,
meaning turbulent fluctuations are neglected here. We also neglect the mean flow when
propagating rays, which is justified since the group velocity of waves with wavenumber
kh,c and frequency ωc is an order of magnitude larger than the mean velocities in the
plume. To avoid interference from left- and right-moving waves, we first apply a Hilbert
transform (Mercier, Garnier & Dauxois 2008) and filter each DMD mode into left-moving
internal waves with kh < 0, kz < 0 and right-moving internal waves with kh > 0, kz < 0.
The filtering introduces artefacts close to the horizontal centreline of the mode, which
are reduced by applying a low-pass filter |kh | < 250, but still present. From ray theory,
the path of waves in the x-z plane is given by dx/dz = tan θ in which θ is the angle
formed between lines of constant phase and the vertical (Sutherland 2010). This angle
is determined implicitly by the polarisation relation ω j = N

t
(x, z) cos θ , giving θ as a

function of x and z for fixed ω j . Representative profiles of N
t
(x, z) are shown in figure 7.

For a particular DMD mode, we integrate starting from a height z0 = 0.28 m and at a
range of horizontal starting positions 0.4 m ≤ x0 ≤ 0.6 m. Along each ray, we calculate
the phase ϕ associated with the buoyancy and vertical velocity fields of the DMD modes.
Under the plane wave assumption b′

DM D = b̂eiϕ, w′
DM D = ŵeiϕ , with the amplitudes

being related by the polarisation relation b̂ω cos ϕ = ŵN 2
0 sin ϕ (Sutherland 2010).
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Figure 10. Ray tracing in DMD modes 6 and 7 with ω/N0 = 0.6, 0.7 from an initial height z0 = 0.28 m and
horizontal starting positions 0.4 m ≤ x0 ≤ 0.6 m shown by coloured dots. Panels (a,d) show filtered w′

DM D
and (b,e) show filtered b′

DM D as described in the text. Colour bar is the same as in figure 9. Panels (c,f ) show
phase perturbation ϕ − ϕ as a function of along-beam distance r − r(z p) from the plume edge at height z p .
Lines are coloured according to starting position and highlighted where 50 % of the ray within the plume is
coherent. Rays are solid black (thin dashed) in (a,b,d,e) where coherent (incoherent), being coherent when the
phase perturbation in (c,f ) lies within the solid black lines of those plots.

Since the phase is constant along an internal wave beam, we identify coherent sections of
each ray where the phase is within π/4 of the mean phase along the ray, ϕ: |ϕ − ϕ| ≤ π/4.
This method implicitly neglects interference from out-of-plane wave beams. Motivated by
the coherent wave beam structure observed in horizontal cross-sections in figure 3, we
assume that this interference is weak.

Figure 10 shows an example of the ray tracing results for modes with ω j/N0 ≈ 0.5, 0.8.
Rays are shown as thick solid black lines where coherent and dashed otherwise. The mean-
subtracted phase along each ray is shown by coloured lines in figures 10(c) and 10(f ). It is
expected that there is some noise in the phase, especially where N

t
(x, z) is noisy near the

fountain boundary. The artefacts introduced by filtering the waves, as well as the imperfect
nature of the modal decomposition, also contributes noise. Nonetheless there are several
rays in each mode along which the phase is approximately constant. This demonstrates that
internal waves apparent in the region above the fountain can be traced to a source within
the fountain.

5. Discussion and conclusions
Inspired by the laboratory experiments of AS10, we have performed LES of a buoyant
plume penetrating into a stably stratified layer that then transforms into a fountain and
excites internal waves that propagate horizontally and vertically away from the fountain
top. In all simulations, the plume source conditions were identical with the plume
encountering the base of the stratified layer 0.2 m above the bottom of the domain. Across
a range of different simulations, the strength of the stratification, N 2

0 , varied over two
orders of magnitude from 0.25 to 100 s−2. Although the depth of penetration of the plume
into the stratified layer decreases significantly with increasing N 2

0 , the frequency spectrum
above the fountain was found to be narrow-banded with energy concentrated in the
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range 0.6 < ω/N0 < 1 and a peak frequency at a near constant fraction of N0 at
approximately ω/N0 = 0.9. We applied a viscous internal wave model, introduced by
Taylor & Sarkar (2007), to help understand the origin of the internal wave spectrum,
concluding that the model can sufficiently capture the power decay and frequency selection
of the far-field internal wave spectrum when initialised from a spectrum taken near the top
of the fountain z0 = 0.36 m and assuming a virtual source height zs = 0.32 m within the
fountain, near the intrusion height. Using DMD, we were able to extract flow structures
associated with internal wave frequencies and used ray tracing to demonstrate that internal
wave beams can be traced from inside the fountain. This method is subject to significant
noise in the phase reconstruction owing to filtering of the wave modes; superior methods
of identifying a wave signature in the turbulent flow within the plume may exist. Whilst
our analyses do not elucidate the wave generation mechanism, the results imply waves are
generated within the fountain and not at the turbulent/non-turbulent interface between the
fountain top and ambient fluid.

Other numerical studies of convection interacting with a stratified layer have likewise
shown the excitation of internal waves with their source originating within the convective
region (Lecoanet & Quataert 2013; Lecoanet et al. 2015; Pinçon et al. 2016; Couston et al.
2018). However, in those studies convective cells scoured the underside of a strongly
stratified layer having buoyancy frequency far exceeding the characteristic convective
frequency. The convection excited horizontally long, hydrostatic waves with a relatively
wide but low-frequency spectrum. The separation of spatial and temporal scales between
the convective and stratified regions allowed them reasonably to adapt Lighthill’s theory
for the generation of sound waves by turbulence (Lighthill 1952) to the problem of internal
waves generated by convection. Thus they showed that internal waves were excited by
Reynolds stresses within the convecting region with a spectrum that decayed rapidly with
increasing frequency. By contrast, our study focuses on a different regime with internal
waves generated by spatially localised penetrative convection, in which the frequencies
associated with turbulence in the fountain top overlap with the observed frequencies of
generated non-hydrostatic internal waves. The lack of spatial and temporal scale separation
in our problem means that Lighthill’s theory cannot be applied, nor could it explain the
observed narrow frequency band at which waves are excited. Indeed, comparison of energy
spectra in figure 6 with those shown in Couston et al. (2018) clearly shows different
structures in spectral space. However, our simulation with N 2

0 = 100 appears to mark a
transition between the penetrative convection regime and the scouring regime: the energy
scale separation between the turbulent plume and waves is much smaller (figure 4b) and the
vertical energy flux in figure 4(a) more closely matches the theoretical scaling derived by
Couston et al. (2018) compared with weaker N0. This trend continues in simulations with
N 2

0 = 1000, not shown here. Whatever the strength of the stratification, internal waves are
generated within the turbulent region, though we argue the excitation mechanism differs
for penetrative convection.
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