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Background

We consider a buoyant plume, carrying a

passive tracer, penetrating from an

unstratified region into a strongly stably

stratified layer.

This is an idealised representation of the

tropical tropopause layer, where

convective overshoots generated by strong

thunderstorm complexes can penetrate

into the lower stratosphere.

The net transport of water vapour by these

overshoots is potentially important

(Fueglistaler et al., 2009; Jensen et al.,

2007), but detailed numerical simulation of

entire thunderstorm complexes remains

computationally expensive (Dauhut et al.,

2015, 2018).

Idealised numerical simulations

We perform large eddy simulations of the Boussinesq Navier-Stokes equations in a

doubly periodic domain.

A plume with a fixed integral source buoyancy flux F0 and source radius r0 is generated
by relaxing the buoyancy and vertical velocity towards the analytic profiles of an

axisymmetric forced plume, in a thin forcing region at the bottom of a uniform layer of

depth H . The plume carries a passive tracer with concentration φ(x, t) and the

buoyancy field is b(x, t).
A linear stably stratified layer with constant buoyancy frequency N lies above the

uniform layer. All quantities shown are non-dimensionalised using F0 and N . The

characteristic lengthscale is F
1/4
0 N−3/4 and the characteristic timescale is N−1.
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Plume dynamics

As the plume penetrates the stably stratified layer and encounters more buoyant fluid, it

decelerates and overturns at zmax. Plume fluid then subsides to the equilibrium height

zn and forms a radially-spreading intrusion.

Irreversible transport of tracer to a given buoyancy surface depends on the

environmental buoyancy accessed via mixing during the transient rise of plume fluid

deep into the stratified layer. All plots and data shown are from a simulation with

N = 1 s−1 and F0 = 2.3 × 10−7 m4s−3.
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Buoyancy-tracer volume distribution

The joint distribution W (b, φ; t) of volume in (b, φ)-space applied to a fixed volume

V is defined as

W (b′, φ′; t) =
∫

V
δ(b(x, t) − b′)δ(φ(x, t) − φ′) dV, (1)

such that W (b′, φ′; t) db dφ is the volume of fluid within V with buoyancy between b′

and b′ + db and tracer concentration between φ′ and φ′ + dφ. Here, V is the

stratified layer z ≥ 0. The volume distribution W satisfies the evolution equation:

dW

dt
= −∇(b′,φ′) · F − S (2)

where the flux F is

F (b′, φ′; t) =
∫

V
κ(∇2b, ∇2φ) δ(b − b′)δ(φ − φ′) dV, (3)

and the source/sink S is

S(b′, φ′; t) =
∫

∂V
u · n δ(b − b′)δ(φ − φ′) dA, (4)

where u is the fluid velocity in physical space and n is the outward normal.

The volume distribution W within V is independent of advection; only fluid

entering V and diffusive mixing result in changes to W .

A mixture of fluid parcels lies in the (b, φ)-space convex envelope of those parcels.
The cumulative mixed volume distribution M(b, φ; t) is the change in the volume

distribution W compared with the cumulative source distribution up to time t,

M(b′, φ′; t) = W (b′, φ′; t) −
∫ t

0
−S(b′, φ′; t′) dt′ = −

∫ t

0
∇(b′,φ′) · F (b′, φ′; t′) dt′. (5)

Volume distribution in convective penetration

S(b, φ; t) shows that undiluted plume fluid entering the stratified layer lies along a line

in (b, φ)-space. Turbulent mixing during the rise through the uniform layer gives b and
φ Gaussian radial profiles with the same characteristic width, so φ ∝ b. At the edges of
the plume, b and φ are small, whilst b and φ are maximised near the plume centreline.

The environmental fluid surrounding the plume enters the volume distribution from

the φ = 0 axis in (b, φ)-space. Mixtures of plume and environmental fluid lie within the

convex envelope of the source line and the φ = 0 axis up to the environmental

buoyancy corresponding to zmax.

The convex envelope is not filled: extreme values of b and φ in the plume core do not

mix with the environment due to shielding by the plume edges and intrusion, until

overturning near zmax when b and φ have been reduced by mixing.

Input, transport and accumulation regions

The distribution M(b, φ; t) represents the integrated effect of diffusive mixing up to

time t; where M < 0 there is a net loss of volume locally in (b, φ)-space and where

M > 0 there is a net gain of volume due to mixing.

In quasi-steady state, we use M to partition (b, φ)-space into three regions, each

corresponding with coherent regions of physical space.

Region U where M < 0 corresponds to undiluted plume fluid in the plume core, which

continuously enters the stratified layer and moves away from the source line in

(b, φ)-space due to mixing with the environment.

Region T where M > 0 is small and non-increasing corresponds with the plume cap,

where much of the undiluted plume fluid is first exposed to, and mixes with, the

surrounding environment with significantly larger buoyancy.

Region A where M > 0 is large and increasing corresponds with the intrusion, where

significant volume accumulates as mixtures of environmental and plume fluid become

well-mixed and entrain further environmental fluid surrounding the intrusion.

Formally, regions A and T are separated by a threshold M = m(t) which minimises

the total volume change in region T :∫
{0<M≤m(t)}

∇(b,φ) · F dbdφ (6)

Entrainment

The volume of the plume cap and undiluted plume fluid is approximately constant,

whilst the volume of the intrusion grows proportional to the volume of the full plume.

The volume of environmental fluid entrained by each region is calculated by

integrating the boundary flux Fφ across the intersection of each region with the φ = 0
axis.

The intrusion entrains the largest volume of environmental fluid as it spreads radially.

However, the entrainment rate, defined as the rate of change of the entrained volume

as a fraction of the region volume, is largest in the plume cap.

Mixing diagnostics

To examine the mixing in each region
identified by M , we consider the spatial
distribution of four mixing diagnostics,
shown here as cross-sections in the
x − z plane and as volume averages in
each region U , T and A:

turbulent kinetic energy dissipation rate ε
potential energy dissipation rate χ
local vertical buoyancy gradient ∂zb
activity parameter I = (ε/ν)/∂zb which
quantifies the balance between the timescale

for turbulence to develop and the local

buoyancy timescale

Full plume U T A
Volume % 100 4.27 10.3 85.5

I 31.2 242 37.9 19.6

〈|∂zb|〉 1.23 0.99 2.6 1.08

ε 4.14 · 10−2 0.29 0.12 1.95 · 10−2

χ 2.6 · 10−2 3.43 · 10−2 0.14 1.2 · 10−2

η 0.39 0.11 0.54 0.38

Table 1. Mixing diagnostics at t = 15.

The instantaneous mixing efficiency is calculated as η = χ/ (χ + ε), which quantifies

the fraction of energy dissipated via turbulence that leads to diffusive mixing.

Stages of mixing

Undiluted plume fluid rises upwards, with large TKE dissipation ε and relatively

weak buoyancy gradients. Mixing in this region exhibits low efficiency, around 10%.

As fluid overturns and impinges on the surrounding environmental fluid, intense

buoyancy gradients are established as indicated by a thin layer of very large χ in the

plume cap. Here, mixing is the most efficient, around 50%.

In the spreading intrusion, there is continued efficient mixing as fluid homogenises

and entrains environmental fluid at the bottom of the stratified layer, but buoyancy

gradients and turbulent dissipation are both weak.
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Summary

We provide a framework for quantifying the mixing effect of a buoyant plume with

a passive tracer as it penetrates into a stably stratified environment. In particular,

we identify a transport region in which much of the transition from the undiluted

plume to mixed intrusion takes place.

Future work is focused on establishing the dependence of these results on F0, N ,

and the configuration of the plume at penetration – offering a possible approach to

parameterisations of tracer transport and mixing in convective penetration.

By introducing large-scale vertical shear and buoyancy-dependent tracer

concentration, which captures the effect of water vapour saturation, we can

investigate setups closer to the atmospheric problem.

Personal homepage: cwp.io APS DFD 2023 Email: cwp29@cam.ac.uk

https://arxiv.org/abs/2310.06096
https://cwp.io
mailto:cwp29@cam.ac.uk

	References

