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Diagnosing tracer transport in convective
penetration of a stably stratified layer
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We use large-eddy simulations to study the penetration of a buoyant plume carrying a
passive tracer into a stably stratified layer with constant buoyancy frequency. Using a
buoyancy-tracer volume distribution, we develop a method for objectively partitioning
plume fluid in buoyancy-tracer space into three regions, each of which corresponds to
a coherent region in physical space. Specifically, we identify a source region where
undiluted plume fluid enters the stratified layer, a transport region where much of the
transition from undiluted to mixed fluid occurs in the plume cap and an accumulation
region corresponding to a radially spreading intrusion. This method enables quantification
of different measures of turbulence and mixing within each of the three regions, including
potential energy and turbulent kinetic energy dissipation rates, an activity parameter and
the instantaneous mixing efficiency. We find that the most intense buoyancy gradients
lie in a thin layer at the cap of the penetrating plume. This provides the primary stage
of mixing between plume and environment and exhibits a mixing efficiency around
50 %. Newly generated mixtures of environmental and plume fluid join the intrusion and
experience relatively weak turbulence and buoyancy gradients. As the intrusion spreads
radially, environmental fluid surrounding the intrusion is mixed into the intrusion with
moderate mixing efficiency. This dominates the volume of environmental fluid entrained
into the region containing plume fluid. However, the ‘strongest’ entrainment, as measured
by the specific entrainment rate, is largest in the plume cap, where the most buoyant
environmental fluid is entrained.
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1. Introduction

The interaction between active convection and neighbouring stably stratified regions
is relevant to many geophysical flows. An important example is the tropical upper
troposphere and lower stratosphere, where convective plumes generated by strong
thunderstorm complexes can penetrate through the tropical tropopause layer into the
lower stratosphere, resulting in vertical transport of trace gases and water vapour (Jensen,
Ackerman & Smith 2007; Randel & Jensen 2013). Numerical simulations of convective
penetration events have been performed using realistic and complex meteorological
models (Dauhut et al. 2015, 2018) containing many physical processes but these are
computationally expensive and challenging to interpret.

Another geophysical process where this fluid dynamical problem is relevant is deep
convection in the open ocean. Typically, mixing between the deep ocean and near-surface
water is hindered by the strong vertical density gradients of the thermocline. In some
regions, including several locations in high latitude oceans and the Mediterranean Sea,
intense buoyancy loss from the ocean surface to the atmosphere results in strong,
deep-reaching convection (Marshall & Schott 1999; Herrmann et al. 2008). The transport
of surface water into the deep ocean sets and maintains the properties of the abyss
(Marshall & Schott 1999), both in terms of the general circulation and also biogeochemical
cycles (Ulses et al. 2021).

Further examples of naturally occurring flows involving penetrative convection include
modification of downslope oceanic gravity currents by near-surface convection (Doda
et al. 2023), smaller-scale atmospheric convection below an inversion (Kurbatskii 2001),
volcanic eruptions that penetrate into the stratosphere (e.g. Textor et al. 2003; Carazzo,
Kaminski & Tait 2008) as well as the internal structure of many stars where a convectively
unstable layer is bounded above and below by stable layers (Singh, Roxburgh & Chan
1994; Masada, Yamada & Kageyama 2013). Moreover, the fluid dynamical problem of
convective penetration itself is of continuing scientific interest, in particular the generation
of gravity waves by the penetrating plume cap (Ansong & Sutherland 2010) and the
energetics of the system (Chen & Bhaganagar 2023), with applications to many problems
– see Hunt & Burridge (2015) for a discussion of open questions on fountains, i.e.
plumes surrounded by a more buoyant environment. Much previous work has focused
on laboratory studies of buoyant plumes with simple background density profiles, but
numerical simulation has recently become feasible (Alfonsi 2011).

Progress towards understanding the contribution of convective penetration to tracer
transport in geophysical settings can be made by considering an idealised representation
of the problem in which a region of strong stable stratification is penetrated by a turbulent
buoyant plume generated in a region with weak or zero stratification. The objective of
the study reported in this paper is to diagnose the irreversible diapycnal tracer transport
that results from turbulent mixing between plume fluid carrying a passive tracer and the
surrounding environmental fluid in the stratified layer. We aim to provide a quantitative
description of the mixing involved in this diapycnal transport. Such descriptions are
essential in forming parameterisations of convective penetration. Throughout the flow
evolution, plume fluid may be distinguished from environmental fluid by the presence
of non-zero tracer concentration. Crucially, both the tracer concentration and buoyancy
fields are subjected to turbulent mixing, resulting in the entrainment of environmental
fluid into the plume and modification of the relationship between buoyancy and tracer
within the plume. Plumb (2007) introduced a tracer–tracer probability density function to
study rapid isentropic mixing in the stratosphere. Penney et al. (2020) utilised this method
to study diapycnal mixing of passive tracers by Kelvin–Helmholtz billows arising in a
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Figure 1. Set-up for numerical simulations of a buoyant plume with source integral buoyancy and tracer flux
F0 and source radius r0 penetrating from a uniform layer into a linearly stably stratified layer with constant
buoyancy frequency N. The main plume structures discussed throughout this paper are indicated in red. The
pre-penetration region defined in § 3 for diagnostic purposes is shown in grey. The initial buoyancy profile
(right) in the stratified environment is b(x, 0) = N2z (dimensional) for z � 0. The maximum penetration height
zmax and intrusion height zn above the bottom of the stratified layer are indicated by dotted lines. We also show
the forcing region of depth Lc and the forcing modulation profile fm(z) decaying over a distance Lp in blue,
detailed in Appendix A. The (azimuthally averaged) Gaussian profiles of w, b and φ in the plume rising through
the uniform layer are also illustrated in blue.

stratified shear flow. Using buoyancy as one of the tracers, the redistribution of fluid in
buoyancy-tracer space was used to interpret the mixing process.

In this paper we use a similar formulation to diagnose the diapycnal transport of
a passive tracer in a buoyant plume penetrating a linearly stably stratified layer. The
numerical method is detailed in § 2. The evolution of the flow and tracer concentration
is presented in § 3. In § 4 we introduce our formulation of the buoyancy-tracer
‘volume distribution’. We show that the flow can be partitioned into three regions of
buoyancy-tracer space: the source region where plume fluid enters the stratified layer, a
transport region through which volume flows during initial mixing between the plume and
environment and an accumulation region where mixed fluid settles and homogenises. Each
of these regions of buoyancy-tracer space correspond to coherent regions of physical space
that identify the essential structures of the flow, namely the rising plume, plume cap and
radially spreading intrusion, respectively. These structures are indicated in figure 1. In § 5
we analyse diagnostics of the mixing process in each of these regions.

2. Governing equations and numerical model

We consider the penetration of a buoyant plume with source radius r0 and source integral
buoyancy flux F0 generated in a uniform layer of depth H into a stably stratified layer
with buoyancy frequency N. The problem set-up is shown in figure 1. To aid in the
examination of the flow evolution and mixing, we include a passive tracer φ that satisfies
the same evolution equation as buoyancy b = −gρ′/ρ0 where ρ′ is the density deviation
from a reference value ρ0. The tracer is passive in the sense that it has no coupling with
the momentum equation. The scalar field φ(x, t) represents the (dimensionless) tracer
concentration normalised by the tracer concentration on the plume centreline at the source.
As illustrated in figure 1, we define the bottom of the initial stratified layer to be z = 0.
We also define t = 0 as the time at which the plume first penetrates into the stratified

997 A48-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

66
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.662


C.W. Powell, P.H. Haynes and J.R. Taylor

Re Pr r0 H Ldomain Lc Lp τ

6.29 × 106 0.70 0.20 7.97 23.9 0.80 0.40 1.00

Table 1. Non-dimensional parameters for the LES with N = 1 s−1 and F0 = 3.96 × 10−7 m4 s−3 discussed
from § 3 onwards.

layer. The plume source (at the base of the domain) lies at z = −H ≈ −7.97 for the
parameter choices given in table 1. The initial conditions are φ(x, 0) = 0 throughout the
domain whilst b(x, 0) = 0 in the uniform layer z � 0 and b(x, 0) = N2z (dimensional) in
the stratified layer z � 0.

We generate the buoyant plume by forcing the vertical velocity w, buoyancy b and
tracer concentration φ in the shallow forcing region of depth Lc indicated in figure 1.
The plume centreline lies at the middle of the computational domain, x = y = 0. Details
on the plume forcing method can be found in Appendix A. At the source, the generated
plume has integral buoyancy flux F0 = 2

∫ ∞
0 w̄b̄|z=−Hr dr, where ·̄ denotes an azimuthal

and time average, with no excess momentum flux (i.e. a ‘pure’ plume, see Appendix A for
detail). Turbulence is initiated in the plume by applying a 10 % perturbation to the forcing
profiles in the forcing region and to all velocity components in the two grid layers above
the forcing region. Turbulence develops as the plume rises through the uniform layer and
we ensure that, prior to penetrating the stratified layer, the azimuthally averaged vertical
velocity, buoyancy and tracer concentration are self-similar with a Gaussian radial profile
as expected in a fully developed plume (see Appendices A and B).

We non-dimensionalise using the source integral buoyancy flux F0 (with dimensions
L4T−3) and buoyancy frequency N in the stable layer. The length scale is L = F1/4

0 N−3/4

and the time scale is T = N−1. We assume the velocity scale is L/T . The length
scale L naturally arises from the Morton, Taylor & Turner (1956) plume equations in
a stably stratified environment. Following previous experimental and numerical studies
(e.g. Briggs 1965; Devenish, Rooney & Thomson 2010), both the maximum height of the
plume zmax and the height of the intrusion zn above the base of the stratification (illustrated
in figure 1) scale with L (in the case of a ‘lazy’ plume, when incident momentum is
negligible, as considered here).

Owing to the large range of length scales involved in convective penetration, resolving
turbulent scales with direct numerical simulation is not feasible due to the computational
cost of very high resolution simulations. We therefore use large-eddy simulation (LES)
with the anisotropic minimum dissipation (AMD) eddy-viscosity model to represent
unresolved scales (Vreugdenhil & Taylor 2018). Large-eddy simulation has been shown
to be effective for simulating plumes in previous work in the literature, e.g. Pham, Plourde
& Doan (2007). The non-dimensional governing equations for velocity u and scalars b, φ
including sub-grid-scale (SGS) contributions are

∇ · û = 0, (2.1)

Dû
Dt

+ ∇p̂ = 1
Re

∇2û + b̂k̂ − ∇ · τ + fwk̂, (2.2)

Db̂
Dt

= 1
RePr

∇2b̂ − ∇ · λb + fb, (2.3)
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Dφ̂
Dt

= 1
RePr

∇2φ̂ − ∇ · λφ + fφ, (2.4)

where ·̂ indicates filtering at the resolved grid scale and k̂ is the unit vector in the vertical
direction. The terms fw, fb and fφ represent the forcing applied to the vertical velocity,
buoyancy and passive tracer to generate the buoyant plume. The details of this forcing are
discussed in Appendix A. The SGS stress tensor τ has components τij = ûiuj − ûiûj, the
SGS buoyancy flux is λb = ûb − ûb̂ and similarly the SGS tracer flux is λφ = ûφ − ûφ̂.
The two dimensionless parameters are the Reynolds number and Prandtl number

Re = F1/2
0

νN1/2 , Pr = ν

κ
, (2.5a,b)

respectively, where ν is the molecular viscosity and κ is the molecular diffusivity for both
b and φ. The eddy-viscosity model for the deviatoric component of the SGS stress τ d and
the SGS buoyancy and tracer flux are

τ d
ij = τij − 1

3δijτkk = −2νSGSŜij, λb = −κ(b)SGS∇b̂, λφ = −κ(φ)SGS∇φ̂, (2.6a–c)

where νSGS, κ
(b)
SGS and κ

(φ)
SGS are the non-dimensional SGS viscosity, SGS buoyancy

diffusivity and SGS tracer diffusivity, respectively, each determined by the AMD scheme.
The term Ŝij is the components of the non-dimensional shear-rate tensor. The SGS
diffusivities and viscosity may locally exceed the molecular values by several orders of
magnitude in regions with intense turbulence.

We use DIABLO (Taylor 2008) to perform three-dimensional LES of the idealised
set-up shown in figure 1. DIABLO evolves the Boussinesq Navier–Stokes equations
(2.1)–(2.4) discretised using Fourier modes in the two periodic horizontal directions
and second-order finite differences in the vertical direction. The boundary conditions on
the top and bottom boundary are ∂zu = ∂zv = ∂zb = ∂zφ = 0 and w = 0. A third-order
Runge–Kutta scheme is used for time stepping. A 2/3 dealiasing rule is applied when
transforming from Fourier to physical space. We use a cubic domain of side length Ldomain
with a uniform grid of 5122 × 513 points. The side length is chosen large enough that
edge effects are not present and the radially spreading intrusion that forms does not
reach the boundary during the simulation. A sponge layer is added in the top 20 % of
the domain (which the simulated plume does not reach), where the velocity is damped
towards zero and the buoyancy is damped towards the initial background stratification
b(x, 0) = z (non-dimensional), to inhibit the reflection of internal gravity waves from
the top boundary. Validation of the numerical method discussed here is detailed in
Appendix B.

Henceforth we refer to a single simulation with parameters which are equivalent to
the experimental set-up used by Ansong & Sutherland (2010) except for the source
buoyancy flux, which is weaker here. The parameters are given in table 1 and
non-dimensionalised by N = 1 s−1 and F0 = 3.96 × 10−7 m4 s−3. Henceforth, all values
stated are non-dimensionalised with respect to this choice of F0 and N. We also drop the
hat notation and refer to the resolved variables unless otherwise noted.

3. Flow and tracer structure

The flow evolution is presented in three vertical cross-sections through the plume
centreline in figure 2. We identify the plume as regions with tracer concentration
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Figure 2. Three stages of the flow evolution, shown as x − z cross-sections of the tracer concentration φ shown
where φ exceeds 1 % of its value on the plume centreline at the source z = −H. Buoyancy contours are shown
otherwise. Cross-sections are taken at the plume centreline at non-dimensional times t = 1, 6.75, 14. From
left to right, the panels show the plume during initial penetration, reaching maximum penetration height and
spreading of the intrusion.

φ � φmin ≡ 10−2, i.e. we threshold the tracer field at 1 % of its value on the plume
centreline at the source. In the tracer-less environment surrounding the plume we show
contours of the buoyancy field. The bottom of the stratified layer, above which the
buoyancy of the environment becomes non-zero, is indicated by the lowest buoyancy
contour.

Figure 2(a) shows initial penetration of the stratified layer by the plume cap. As the
plume rises through the stratified layer, its upward acceleration decreases as the relative
buoyancy between the plume and the surrounding environment decreases. Once the
environmental buoyancy exceeds that of the plume, the plume decelerates. Eventually,
the rising fluid reverses direction, or ‘overturns’, and begins to subside from the maximum
penetration height zmax (figure 2b). As plume fluid subsides, its buoyancy relative to the
surrounding environment increases until reaching the level of neutral buoyancy zn where
the plume fluid forms a radially spreading intrusion – see figure 2(c). The dynamics
observed in the simulation agrees qualitatively with studies of similar set-ups in the
literature, for example the experiments detailed in Ansong & Sutherland (2010) with an
identical set-up and similar physical parameters.

The evolution of the maximum height of the plume cap during penetration and the
subsequent quasi-steady state is visualised as a time series of tracer concentration on
the plume centreline in figure 3. As has been noted in the literature, the maximum
height of the plume tends to oscillate around a quasi-steady state height zss (Turner
1966) but, to our knowledge, the mechanism setting the frequency of this oscillation
(often referred to as ‘plume bobbing’) is not well understood (e.g. Ansong & Sutherland
2010). In the simulation considered here, the quasi-steady state height zss is close to
the maximum penetration height zmax and the oscillation is weak. For convenience, we
will use zmax to refer to the maximum height of the plume. The maximum penetration
height zmax determines the maximum height at which plume fluid can mix with the
environment (Ansong, Kyba & Sutherland 2008), meaning the initial buoyancy at the
maximum penetration height, b = zmax, represents a plausible constraint on the maximum
buoyancy accessible for mixing with the plume. However, this constraint can occasionally
be exceeded when plume fluid subsiding from the plume cap pulls very buoyant
environmental fluid downwards (see figure 2(b) to the left of the plume cap). Here we
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Figure 3. Time series of the tracer concentration φ(0, 0, z, t) in the z–t plane at the centreline of the
computational domain x = y = 0. The green dashed contour denotes the plume threshold φ = φmin, i.e. where
φ is 1 % of its value on the plume centreline. The maximum penetration height zmax and the quasi-steady state
height zss are marked.

find zmax = 3.94 which agrees with experimental estimates of the maximum penetration
height in the literature, e.g. zmax ≈ 3.8 for a plume with a round source (List 1982).

Internal gravity waves across a range of frequencies are generated during the penetration
process. These waves are visible as small amplitude, long wavelength undulations in the
buoyancy contours above z ≈ 4 in figure 2(c). Any influence of internal gravity waves on
mixing in this flow will be present in the analyses, but it is beyond the scope of this paper
to determine the particular contribution of these waves to mixing.

In the uniform layer, the buoyancy and tracer evolve identically up to a linear factor,
i.e. the undiluted plume fluid entering the stratified layer has a linear relationship between
b and φ at each point. This follows from the self-similarity of the buoyancy and tracer
concentration profiles in the steady state plume that penetrates the stratified layer (see
Appendix B, figure 18). The radial profiles for b and φ are both Gaussian with the
same width but different amplitudes, hence b ∝ φ. After penetrating the stratified layer,
plume fluid with non-zero buoyancy and tracer concentration mixes with tracer-less
environmental fluid and hence the buoyancy and tracer evolve differently. This effect can
be quantified using a tracer probability density function (p.d.f.) in buoyancy coordinates
φ̃(b; t). The p.d.f. is calculated within the stratified layer only. The value of the p.d.f.
φ̃(b; t) is calculated as the total tracer with buoyancy within a range b to b + db in the
stratified layer, normalised by the total tracer in the stratified layer φT(t) = ∑

V φ(x, t)	V ,
where V is the stratified layer and 	V is the grid-cell volume. The definition of φ̃ is such
that

∑
B φ̃(B; t) = 1.

Figure 4 shows φ̃(b; t) in the stratified layer at fixed time intervals post-penetration. The
total tracer in the stratified layer φT(t) is shown inset. The approximately linear increase
in φT with time suggests a relatively uniform input of tracer to the stratified layer, carried
by the penetrating plume. Owing to the self-similar nature of the penetrating plume, we
expect the tracer that enters the stratified layer to have a fixed p.d.f. (with some small
variation). This pre-penetration p.d.f. φ̃0 can be estimated using a domain V chosen as the
pre-penetration region shown in figure 1. This region is a thin layer with (non-dimensional)
depth 1/2 below the bottom of the stratified layer. The pre-penetration p.d.f., shown as
a black dashed line in figure 4, represents the tracer p.d.f. in the plume just before it
penetrates the stratified layer. Without mixing, φ̃ in the stratified layer would match the
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Figure 4. Probability density function φ̃(b, t) of tracer as a function of buoyancy b in the stratified layer at
fixed time intervals post-penetration shown as coloured lines. The black dashed line shows the time-averaged
pre-penetration p.d.f. φ̃0(b), calculated with V chosen as the pre-penetration region indicated in figure 1 and
time averaged. The pre-penetration p.d.f. φ̃0(b) shows the tracer-buoyancy relationship within the plume prior
to penetrating the stratified layer. Differences between φ̃0 and φ̃(b, t) represent the effect of mixing. Total tracer
in the stratified layer φT (t) shown inset.

pre-penetration p.d.f. Mixing during the penetration process manifests as changes in the
tracer p.d.f. when compared with the pre-penetration p.d.f.

Evolution of the post-penetration p.d.f. and changes compared with the pre-penetration
tracer p.d.f. highlight two mixing processes during penetration: mixing within the plume
during penetration, and mixing between the plume and environment. Where plume fluid
carries a large tracer concentration and mixes with the more buoyant surroundings, the
positive tail of the tracer p.d.f. increases. This is particularly evident after t = 6.75 when
the plume has reached zmax = 3.94, at which point very large values of buoyancy in the
environment become accessible and large tracer concentrations at the centre of the plume
are exposed to the environment as plume fluid overturns. At the edges of the plume where
tracer concentration is smallest, mixing with the environment again moves tracer from
lower to higher values of buoyancy and therefore the p.d.f. decreases where b is small.
This effect is supplemented by mixing within the plume, which acts to homogenise the
large tracer concentration and buoyancy at the centre of the plume with the lower tracer
concentration and buoyancy at the edge of the plume. This acts to narrow the p.d.f. and
hence decrease the p.d.f. at large and small values of buoyancy but the effect is only evident
before the plume reaches zmax at t = 6.75 and accesses much larger values of buoyancy.
At late times, most tracer lies in the spreading intrusion at the neutral buoyancy height zn,
which coincides with the peak in the tracer p.d.f.

The buoyancy range of the tracer p.d.f. is determined by the maximum penetration
height of the plume as well as the rapidity of the mixing between the plume and
environment occurring in the plume cap. If fluid quickly reaches zmax and subsides before
substantial mixing with the environment occurs, only small amounts of the more buoyant
environment are entrained and therefore the increase in the p.d.f. at large values of
buoyancy is modest compared with a scenario where plume fluid stalls during overturning
and significant mixing with the environment occurs. In figure 4, the tracer p.d.f. extent
is b ≈ 3 whilst the environmental buoyancy at zmax is approximately b|zmax ≈ 3.94. This
suggests the mixing time scale is slow compared with the dynamical time scale, i.e.
mixing between the largest tracer concentrations first exposed during overturning and
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the environment is slow and continues during subsidence, where the buoyancy of the
environment decreases.

The tracer p.d.f. hints at competing effects of mixing within the plume and between the
plume and the environment. Crucially, the buoyancy and tracer fields are mixed in different
ways owing to the linearly increasing buoyancy and vanishing tracer concentration in
the linearly stratified environment. Whilst changes in the tracer p.d.f. considered here
demonstrate the overall effect on the relation between tracer and buoyancy, it is difficult to
extract information on the intensity of mixing between plume and environmental fluid and
the specific buoyancy and tracer characteristics of the fluid parcels that mix. Furthermore,
the tracer p.d.f. φ̃(b; t) does not give information on the volume of fluid parcels at a given
buoyancy; a peak in the tracer p.d.f. may represent relatively few fluid parcels carrying
large tracer concentrations or many fluid parcels carrying small amounts of tracer. The
distinction is important, since the former can result in stronger gradients upon which
diffusion acts and therefore more effective diapycnal transport of tracer.

4. Buoyancy-tracer volume distribution

The probability distributions of tracer concentration discussed in § 3 isolate the irreversible
transport that results from turbulent mixing. The turbulent mixing of fluid parcels can be
considered a two-step process (e.g. Davies Wykes & Dalziel 2014), composed of stirring
and molecular diffusion. Whilst stirring strengthens tracer gradients across buoyancy
surfaces, it is – in principle – a reversible process. However, molecular diffusion results in
irreversible changes to the buoyancy and tracer characteristics of fluid parcels and hence
changes the tracer distribution.

Here, we use the distribution of volume in buoyancy-tracer space to diagnose mixing
in the stratified layer. That is, we map from three-dimensional physical space to a
two-dimensional phase space by using the buoyancy and tracer concentration fields to
quantify the volume of plume fluid in the stratified layer with each value of b and φ. The
total physical volume of plume fluid represented in the distribution changes in time and
we do not normalise the distribution to form a p.d.f. Omitting this normalisation simplifies
the interpretation of the distribution and its governing equation. The buoyancy-tracer
volume distribution formalism presented here builds on previous density–tracer joint p.d.f.
formulations presented by Plumb (2007) and Penney et al. (2020).

4.1. Definition and properties
We define the volume distribution W(B, Φ; t) in buoyancy-tracer space such that the
volume of fluid in a fixed volume V with B < b(x, t) < B + dB and Φ < φ(x, t) <
Φ + dΦ is given by W(B, Φ; t) dB dΦ. This may be defined as

W(B, Φ; t) =
∫

V
δ(b(x, t)− B)δ(φ(x, t)−Φ) dV, (4.1)

where δ(·) is the Dirac delta function with the inverse dimension of its argument.
Henceforth, we choose the volume V to be the stratified layer. An evolution equation for
W can be obtained using the governing equations for b and φ. See Appendix C for a full
derivation. We have

∂W
∂t

= −∇(B,Φ) · F + S, (4.2)

where F (B, Φ; t) is the mixing flux distribution and S(B, Φ; t) is the source distribution.
The mixing flux distribution F is a vector in buoyancy-tracer space with components
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formed from the volume-weighted average of the non-advective terms ḃ and φ̇ in (2.3)
and (2.4) respectively, representing the flux of W in buoyancy-tracer space due to mixing
and is defined as

F (B, Φ; t) = (Fb,Fφ) =
∫

V
(ḃ, φ̇)δ(b(x, t)− B)δ(φ(x, t)−Φ) dV, (4.3)

where ḃ = (RePr)−1∇2b − ∇ · λb and φ̇ = (RePr)−1∇2φ − ∇ · λφ . Note that the plume
forcing terms fb and fφ are excluded from ḃ and φ̇ since the forcing vanishes in the stratified
layer. The source distribution S represents a source or sink of W due to boundary fluxes
across ∂V

S(B, Φ; t) =
∫
∂V

u · n δ(b(x, t)− B)δ(φ(x, t)−Φ) dA, (4.4)

where u is the velocity in physical space and n is the inward normal on the boundary ∂V
of V . Since we are considering a flow upwards into V , u · n is positive and S acts as a
source of W. Note that whilst S represents the effect of fluxes across the boundary ∂V
in physical space, it is distributed in buoyancy-tracer space. Note that (4.2) contains no
terms in which advection plays an explicit role except for the source term – which captures
advection through the domain boundary – representing the fact that W remains unchanged
under advection within the domain.

Turbulent mixing redistributes volume in buoyancy-tracer space, which results in
changes to W via the mixing flux term −∇(B,Φ) · F . The change in W at a point (B, Φ) in
buoyancy-tracer space as a result of turbulent mixing up to time t is therefore

M(B, Φ; t) = −
∫ t

0
∇(B,Φ) · F (B, Φ; t′) dt′ = W(B, Φ; t)−

∫ t

0
S(B, Φ; t′) dt′, (4.5)

such that M(B, Φ; t) dB dΦ is the change in volume of fluid with B < b(x, t) < B + dB
and Φ < φ(x, t) < Φ + dΦ up to time t due to mixing. Therefore M represents the
integrated effect of the mixing flux F and we refer to M as the net mixing effect
distribution. The second equality in (4.5) follows from time integrating (4.2) and noting
that W(B, Φ; t = 0) = 0 since there is no tracer in the initial stratified layer. Hence, M can
be interpreted as a cumulative measure of the changes to W relative to the time-integrated
source distribution, i.e. the changes in the volume distribution that arise solely from
mixing. The final term in (4.5), which we refer to as the cumulative source distribution,
represents the volume of fluid with buoyancy B < b < B + dB and tracer concentration
Φ < φ < Φ + dΦ that has entered the stratified layer up to time t. The volume distribution
W � 0 and the cumulative source distribution is also positive assuming there is a flow into
V only. However, M can be positive or negative depending on the relative sizes of the
volume distribution and the cumulative source distribution.

The net mixing effect distribution M(B, Φ; t) is positive in buoyancy-tracer space where
more volume is present at time t than has entered the stratified layer up to time t, i.e.
there is a net gain in the volume of fluid with buoyancy B and tracer concentration Φ due
to mixing. Correspondingly, M(B, Φ; t) is negative where more volume has entered the
stratified layer up to time t with buoyancy B and tracer concentration Φ than currently
exists at time t, i.e. there is a net loss in the volume of fluid with buoyancy B and tracer
concentration Φ due to mixing. The value of M therefore indicates the transfer of volume
within W due to mixing; fluid leaves regions of buoyancy-tracer space with M < 0 and
enters regions with M > 0.

To summarise, the distributions W, S,F and M together describe the flow in terms
of its effect on buoyancy-tracer space. The volume distribution W is an instantaneous
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representation of the amount of fluid within the stratified layer with given ranges of
values of buoyancy and tracer concentration. Large values of W indicate large volumes
of fluid with a narrow range of b and φ, though the fluid parcels corresponding to
this range are not necessarily co-located in physical space. The source distribution S
represents the volume distribution of fluid that enters the stratified layer from the uniform
layer. In the absence of mixing, W would be equivalent to the time integral of S. The
mixing flux distribution F represents the redistribution of fluid in buoyancy-tracer space
due to mixing. The net mixing flux distribution M captures the change in W relative to
time-integrated S via F and indicates where there is accumulation or loss of volume due to
mixing.

4.2. Idealised example
The effect of an idealised turbulent mixing event on buoyancy-tracer space is illustrated in
figure 5. The top row shows the volume distribution containing three initial fluid parcels
(blue points) which have entered the stratified layer. As turbulent stirring brings these fluid
parcels together, another fluid parcel (green point) enters the domain and all four fluid
parcels mix. The resulting mixed fluid parcel (red point) is a volume-weighted average
of the fluid parcels involved in the mixing event. The bottom row shows the distributions
after the mixing event. The volume distribution W is non-zero (and positive) only where
the final mixture lies in buoyancy-tracer space and the direction of the mixing flux vectors
F indicates the redistribution of volume. The cumulative source distribution

∫ t
0 S dt′ is

positive at the values of b and φ where the fluid parcels entered the domain and vanishes
elsewhere. The net mixing effect distribution M is negative at these points, as volume has
been lost, and positive where the mixed fluid parcel lies as volume has been gained. These
principles can be used to understand the mixing processes in the physical flow that result
in changes in the distribution in buoyancy-tracer space. Whilst it is not possible to isolate
distinct fluid parcels that are mixing at any one time, we can identify physical regions
of the flow that are subject to turbulent mixing and isolate the corresponding regions of
buoyancy-tracer space.

Turbulent mixing acts to homogenise the buoyancy and tracer concentration of fluid
parcels. Provided the molecular diffusivities of buoyancy and tracer are equal, a mixture
of two fluid parcels lies on a line between the two parcels in buoyancy-tracer space
(Penney et al. 2020). Therefore, as the buoyancy-tracer volume distribution W evolves,
it is constrained to lie within its own past convex envelope, i.e. the smallest convex set
that contains all non-zero points of the distribution. As illustrated in figure 5, this convex
envelope must include fluid that enters the domain during the mixing process. The convex
envelope of the initial volume distribution is indicated by the dotted envelope and the
dashed envelope indicates the convex envelope including newly arriving fluid parcels. We
emphasise that the final mixed fluid parcel is contained within the convex envelope of
initial and newly arriving fluid, but not necessarily within the convex envelope of the
initial fluid only. The principle of homogenising fluid parcels illustrated in figure 5 can
be generalised to continuous mixing of fluid in a flow, in which case the convex envelope
constraint applies to the volume distribution as a whole. This implies that in the absence
of sources the convex envelope reduces over time and converges towards some compact
distribution (Penney et al. 2020). In the set-up we consider, fluid entering the stratified
layer causes the extremes of the distribution to persist, whilst turbulent mixing acts to
continuously shift the buoyancy-tracer characteristics of fluid towards an accumulation
region in buoyancy-tracer space.
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Mixing event
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Initial fluid parcels

Initial convex envelope

Arriving fluid parcel

Initial + newly arriving

fluid convex envelope

Final mixture

Flux F of W

Final distributions
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φ
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t S dt′

b

φ

Net mixing effect
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b

φ

(a)

(b)

Figure 5. Schematic diagram of the effect in buoyancy-tracer space of an idealised turbulent mixing event
between a set of discrete fluid parcels that have entered the stratified layer and a fluid parcel that later enters
the stratified layer. The top row illustrates the convex envelope property of the volume distribution W, which
implies that a mixture of a set of fluid parcels lies within the smallest envelope that contains the distribution
of the fluid parcels that are mixed together. The distributions W,

∫
S dt and M following the idealised mixing

event are shown on the bottom row. Positive (arbitrary) values of each distribution are indicated by a circled +,
negative (arbitrary) values are indicated by a circled −. The mixing flux distribution vectors F are indicated by
grey arrows.

4.3. Numerical implementation
To examine the numerical simulation detailed in §§ 2 and 3, we use a discrete formulation
of the buoyancy-tracer volume distribution introduced in § 4.1. We choose the domain V
to be tracer-containing plume fluid within the stratified layer. The stratified layer initially
corresponds to the volume z � 0. However, the plume can perturb the bottom of the
stratified layer slightly below z = 0. We therefore define the domain as the region where
−1 � z � Lz, φ > φmin, and b > 0. As a consequence, the ‘reservoir’ of environmental
fluid where φ = 0 is excluded. In interpreting results, we therefore consider the boundary
φ = φmin as a source where volume can enter the distribution from the environment. The
entrainment of environmental fluid across this boundary in buoyancy-tracer space into the
volume distribution is discussed in § 4.7 and illustrated in figure 7.

The buoyancy and tracer domains are subdivided into Nb and Nφ equally sized bins
of size δB = (bmax − bmin)/Nb and δΦ = (φmax − φmin)/Nφ respectively. We choose
bmin = 0 and bmax = 4 since the largest accessible buoyancy is related to the maximum
penetration height (Ansong et al. 2008) which is experimentally predicted to be zmax � 4
(List 1982). To accommodate fluctuations in tracer concentration, we choose φmax to be
larger than the tracer concentration on the plume centreline 2φm(0) at penetration height
z = 0 using the profile predicted by the Morton et al. (1956) plume equations, φm(z),
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defined in (A5) (see Appendix A for details). We use φmin = 10−2, consistent with the
plume threshold introduced in § 3. Henceforth we use Nb = Nφ = 256.

Denoting the centre of a given bin as (Bi, Φj), the associated value of the volume
distribution is computed as

Wij(t) =
∑

V

Iij(x, t)	x	y	z, (4.6)

where the sum is over all grid points within the domain V , 	x,	y,	z are the grid-cell
widths and the indicator Iij(x, t) is defined as

Iij(x, t) =
{

1
(
b(x, t)− Bi, φ(x, t)−Φj

) ∈
(
−1

2δB,
1
2δB

]
×

(
−1

2δΦ,
1
2δΦ

]
,

0 otherwise.
(4.7)

The value of Wij(t) therefore represents the total volume within V where the buoyancy
lies within δB/2 of Bi and the tracer concentration lies within δΦ/2 of Φj. Note that in
the continuous formulation, the volume distribution W(B, Φ; t) defined by (4.1) must be
integrated over B and Φ to yield a volume, whilst Wij(t) itself has dimensions of volume
and need only be summed over i and j. The continuous and discrete formulations coincide
in the limit δB, δΦ → 0, such that

lim
δB,δΦ→0

Wij(t)
δBδΦ

= W(Bi, Φj; t). (4.8)

The equivalence (4.8) also applies to the discrete mixing flux distribution F ij(t), the
discrete source distribution Sij(t) and the discrete net mixing effect distribution Mij(t)
defined by

F ij(t) = (Fb
ij(t),Fφij (t)) =

∑
V

Iij(x, t)(ḃ, φ̇)	x	y	z, (4.9)

Sij(t) =
∑
∂V

Iij(x|z=−1, t)w(x|z=−1, t)	x	y, (4.10)

Mij(t) = Wij(t)−
∑

t′
Sij(t′)	t′, (4.11)

where 	t′ is the simulation time step. In (4.9), ḃ and φ̇ are the non-advective terms in the
scalar evolution equations (2.3), (2.4) of b, φ respectively, as defined in § 4.1. In (4.10) we
have used the fact that n = k̂ on the bottom boundary of the domain V .

4.4. Results
The discrete formulation of the distributions given in § 4.3 provides an approximation
to the continuous formulation and is presented in all figures shown below. However, the
interpretation is the same as the continuous formulation and we will refer to the continuous
formulation in all discussions. Quantities derived from the distributions are given in both
continuous and discrete forms for completeness. In defining the discrete and continuous
formulations we use the arguments B and Φ, which represent values of buoyancy and
tracer concentration respectively. We treat W, F , S and M as functions of b and φ to aid
clarity, e.g. W(b, φ; t), with the interpretation that b and φ represent values of buoyancy
and tracer concentration found in the flow in the same way as B and Φ in §§ 4.1 and 4.3.
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Figure 6. Three instantaneous snapshots showing the evolution of the buoyancy-tracer volume distribution
W(b, φ; t) (middle) and source distribution S(b, φ; t) (bottom) at non-dimensional times t = 1, 6.75, 14
corresponding with figure 2. The convex envelope of the volume distribution W at time t is shown as a
red dashed line in the middle panel. To aid interpretation, we also show x − z cross-sections of the tracer
concentration and buoyancy contours, as in figure 3 (top).

Figure 6 shows the buoyancy-tracer volume distribution W(b, φ; t) (middle row),
the source distribution S(b, φ; t) (bottom row), and x − z cross-sections of the tracer
concentration field and buoyancy contours (top row). These results are shown at three
snapshots corresponding with stages of the flow evolution as in figure 2. The distributions
are shown only where non-zero, i.e. regions of buoyancy-tracer space which are not
coloured indicate that there is no fluid with buoyancy and tracer concentration in that
range. In each snapshot of W, the red dashed lines show the convex envelope that
constrains the evolution of the volume distribution. As seen in the figure, the source
distribution lies within the convex envelope of W(b, φ; t). Furthermore, as the plume rises
and accesses more buoyant fluid in the surrounding environment, the convex envelope is
extended along the φ = 0 axis as new environmental fluid becomes accessible via mixing.

The results shown in figure 6 illustrate how the volume distribution captures the
dynamics and mixing processes at each stage of the flow evolution. We first note that
the source distribution S(b, φ; t) takes positive values only, since there is only a flow into
the stratified layer. Furthermore, S is non-zero only on a line through the origin as expected
from the linear relationship between b and φ in the rising plume. We refer to this as the
source line. Given that the convex envelope of a set of points on a line segment is the same
line segment, mixing of undiluted plume fluid within the plume only redistributes fluid on
the source line. When undiluted plume fluid mixes with the surrounding environment, it
is moved away from the source line. This offers a clear distinction between undiluted and
mixed plume fluid, as illustrated schematically in figure 7. In the buoyancy-tracer volume
distribution W shown on the middle row of figure 6, fluid appearing away from the source
line therefore represents a mixture of plume and environmental fluid. Further information
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Figure 7. Schematic diagram illustrating the correspondence between regions in physical space and regions in
buoyancy-tracer space. Environmental fluid is represented by the b axis where φ = 0 (red), between the bottom
of the stratified layer where b = 0 and the maximum penetration height where b = zmax. Undiluted plume fluid
lies on the source line where φ ∝ b (blue), with large b and φ in the core of the plume and small b and φ towards
the edges. Mixed fluid lies between these two lines, within their convex envelope (dotted grey). Some regions
of the convex envelope (hatched area) are inaccessible due to the shielding effect of the plume edge (where φ
is non-zero but small) and the intrusion surrounding the rising plume. Volume entering the distribution due to
entrainment of environmental fluid is indicated by the red arrows.

on the regions of the undiluted plume that mix with the environment is gained by noting
that, owing to the Gaussian profiles of the plume pre-penetration, b and φ are larger near
the centreline of the plume and smaller towards the edge of the plume (see figure 6c).
Hence fluid near the ‘plume edge’ lies nearest the origin on the source line whilst fluid in
the ‘plume core’ lies at the extreme end of the source line.

Figure 6(a) shows the plume shortly after penetrating the stratified layer and before
reaching its maximum penetration height. At this stage, only the edges of the plume
are exposed to the environment in the lower part of the stratified layer which has a
relatively small buoyancy. We therefore find volume appearing in a small region of the
convex envelope closest to the origin in buoyancy-tracer space. In figure 6(b), the plume
has reached its maximum penetration height and undiluted plume fluid in the plume
core, which has until this stage been shielded from the environment by the edges of the
plume, overturns and becomes exposed to environmental fluid near zmax with relatively
large buoyancy. The volume distribution at this time covers a wider range of b and φ
as environmental fluid with a large range of buoyancy is able to mix with much of the
undiluted plume fluid lying on the source line. However, note that we do not see mixing
between the extreme end of the source line and the environment (see hatched region in
figure 7). As undiluted plume fluid in the core of the plume rises, turbulent mixing acts to
homogenise the buoyancy and tracer concentration within the source distribution, reducing
the largest values of b and φ near the centreline of the plume. Hence, when this fluid is
first exposed to the environment in the plume cap, it lies closer to the middle of the source
line. We refer to this as the shielding effect. Note that the large values of b and φ on the
source line appear to persist, and may increase, due to new undiluted plume fluid entering
the stratified layer.

Figure 6(c) shows the quasi-steady state plume where there is a continuous input
of undiluted plume fluid along the source line φ ∝ b, mixing between the plume and
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environment up to values of buoyancy corresponding to heights near zmax and an
accumulation of fluid at lower values of buoyancy and tracer concentration corresponding
to the radially spreading intrusion. The intrusion dominates the total volume of the
plume at late times and is represented by the region of large W at intermediate values
of buoyancy and tracer concentration. Note that the intrusion enhances the shielding effect
by preventing undiluted plume fluid from accessing the environment before reaching the
plume cap.

4.5. Quasi-steady state
In this flow, quasi-steady state refers to the long-term behaviour established once an
intrusion has formed. In this state, undiluted plume fluid continuously arrives in the
stratified layer, mixes with the environment and accumulates in the intrusion. This means
that in quasi-steady state the volume of undiluted plume fluid in the stratified layer
remains roughly constant whilst the full plume volume (i.e. the sum of the rising undiluted
plume, plume cap and intrusion), and in particular the volume of the intrusion, increases
monotonically.

To quantitatively identify the time at which quasi-steady state (QSS) starts, first we
define the source line more generally as the region where the cumulative source volume
is positive, S = {(b, φ)| ∫ t

0 S(b, φ; t′) dt′ > 0}. Next, we can define the volume associated
with any region R of buoyancy-tracer space at time t as

V(R; t) =
∫

R
W(b, φ; t) db dφ =

∑
R

Wij(t). (4.12)

We expect that in QSS dV(S)/dt ≈ 0. However, ‘plume bobbing’ (i.e. the up-and-down
motion of the plume cap noted in § 3) results in some variation of the volume of the source
line. The quasi-steady volume of undiluted plume fluid V(S) can also gradually increase
over time owing to the shielding effect. We therefore introduce an alternative constraint
for identifying QSS which utilises the net mixing effect distribution M. As illustrated in
figure 7, the source line represents undiluted plume fluid arriving in the stratified layer,
which introduces volume into the distribution that is eventually mixed away from the
source line. In the transient penetration stage, turbulent mixing redistributes fluid on the
source line before mixing with the environment. Hence, there is some accumulation on
parts of the source line and M > 0. However, once the plume reaches QSS and mixing
with the environment continuously removes volume from the source line, M must become
negative. Away from the source line, S vanishes so M is necessarily positive according
to (4.5). We define the region U = {(b, φ)|M(b, φ; t) < 0} and identify QSS as the time
when the volume associated with U , V(U), is within 10 % of the volume of the source line
V(S). These volumes and the time we identify as the start of QSS, tQSS ≈ 3.5, are shown
in figure 8(a).

4.6. Source, transport and accumulation regions
We now restrict attention to QSS t > tQSS, i.e. ignoring any transient dynamics during
initial penetration. Here, we discuss the results for M and show that this distribution can
be used to partition plume fluid into three classes which identify coherent regions of the
plume.

Figure 9 shows the net mixing effect distribution in both physical and buoyancy-tracer
space at t = 14, with the mixing flux distribution vectors F overlaid in buoyancy-tracer
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Figure 8. (a) Volume of the source line S = {∫ t
0 S(b, φ; t′) dt′ > 0} (dashed line) and the region

U = {M(b, φ; t) < 0} (solid line). The start of QSS (vertical dotted line) is identified as the time when these
volumes agree to within 10 %. (b) Decomposition of the full plume volume into undiluted plume fluid, plume
cap and intrusion (solid coloured lines) using the partitioning introduced in § 4.6. The total plume input volume
up to time t (black dashed line) is shown for reference.

space. The distribution is represented in physical space by using the buoyancy and tracer
concentration to map between buoyancy-tracer space and physical space, i.e. we plot
M(b(x, t), φ(x, t); t). To avoid confusion between regions of buoyancy-tracer space and
the corresponding fluid in physical space, we refer to the former as regions and the
latter as classes of fluid. Recall that the net mixing effect distribution, M, quantifies the
integrated effect of the mixing flux distribution, F , or, equivalently, the volume difference
between the volume distribution and the cumulative source distribution, representing
the volume change due to mixing. As expected, we find M < 0 on the source line
where undiluted plume fluid is continuously supplied before being mixed away into
the M > 0 region. Environmental fluid is entrained into the plume via mixing and
accumulates in the intrusion where M is maximised. We define class U as undiluted
plume fluid corresponding to the source region U = {M < 0}, introduced in the definition
of QSS in § 4.5. For convenience, we use the notation {M< 0} as shorthand for
{(b, φ)|M(b, φ; t)< 0} henceforth. The mixing flux vectors point along the source line,
indicating that mixing within U is mostly within the plume rather than between the plume
and environment, owing to the shielding effect. Once undiluted plume fluid is exposed to
the environment, there is a strong mixing flux between U and the φ = φmin axis where
environmental fluid joins the distribution.

As discussed in § 4.1, we expect volume to accumulate in some region of
buoyancy-tracer space. This is clearly demonstrated in physical space, where fluid collects
in the intrusion after mixing with the environment. We can distinguish the accumulation
region from the ‘transport’ region through which volume moves to reach the accumulation
region by identifying a region in which M is small and approximately constant. In this
region, plume fluid is actively mixing with the environment and transporting volume away
from the source line, but fluid does not accumulate in this region. Then, fluid that has
undergone significant mixing and accumulates in the intrusion corresponds with a region
where M is increasing with time. The regions are distinguished by a time-dependent
threshold m∗(t) such that the transport region, where much of the transition from undiluted
to mixed plume fluid occurs, is T = {0 < M � m∗} and we refer to fluid corresponding to
this region as class T. The accumulation region is A = {M > m∗} with corresponding
mixed fluid accumulating in the intrusion referred to as class A. The threshold m∗(t)
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Figure 9. Snapshots at non-dimensional time t = 14 of the buoyancy-tracer net mixing effect distribution,
M(b, φ; t), in buoyancy-tracer space (a) and (b) in an x − z cross-section of physical space. Buoyancy contours
are shown in the surrounding environment. The mixing flux distribution, F , is overlaid in the top panel and the
vectors are uniformly scaled to be visible.

is found by identifying the value m which minimises the total mixing flux convergence
f (m; t) associated with a region {0 < M � m(t)} at each time t, where

f (m; t) =
∫

{0<M�m}
dW
dt

− S db dφ = −
∫

{0<M�m}
∇(b,φ) · F db dφ, (4.13)

so that the volume that enters the region T is approximately equal to the volume leaving
T . Then, remaining mixed fluid lies in the region A which must capture the accumulation
of mixed fluid, formed from undiluted plume fluid that has entered the stratified layer and
entrained environmental fluid. The numerical implementation of this method using the
discrete form of the volume distributions is discussed further in Appendix D. The time
variation of the threshold m∗(t) is shown in figure 19 in Appendix D.

The net mixing effect distribution with this partitioning is shown in figure 10, with class
U coloured blue, class T coloured green and class A coloured red. Within classes U and
A, the volume-weighted centre of mass is shown by a coloured triangle, approximately
indicating the position in buoyancy-tracer space towards which mixing acts to move fluid
within each class. Internal plume mixing of undiluted plume fluid redistributes volume on
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Figure 10. As in figure 9, with the distribution partitioned into three regions: U (blue) where M � 0, T (green)
where 0 < M � m∗(t) and A (red) where M > m∗(t). The threshold m ∗ (t) minimises the total mixing flux
convergence defined by (4.13). Corresponding fluid classes U, T and A (respectively) shown in physical space.
Triangles represent the volume-weighted centre of mass in class U (blue) and class A (red). Undiluted plume
fluid in U is mixed towards the blue triangle whilst fluid accumulating in A is mixed towards the red triangle.

the source line towards the blue triangle and homogenisation of mixed fluid in the intrusion
accumulates volume near the red triangle. Figure 10 demonstrates the correspondence
between the regions U , T and A and coherent structures of the plume. The source region
U identifies the rising undiluted plume. The accumulation region A identifies the radially
spreading intrusion. The transport region T corresponds with newly generated mixtures
in the plume cap and subsiding fluid joining the intrusion. The partition of the full plume
volume into the undiluted plume, plume cap, and intrusion volume is shown in figure 8(b)
for t > tQSS. As expected, we find that the volume of the intrusion (class A) dominates the
plume at late times, as the volume of undiluted plume fluid and the plume cap each remain
approximately constant.

4.7. Entrainment
We calculate the entrained volume E(t) as the difference between the volume of the full
plume and the cumulative volume of the source term S up to time t, so that E represents
the volume of environmental fluid that has been mixed into the plume up to time t. We
have

E(t) ≡
∫

{W>0}
W(b, φ; t) db dφ −

∫ t

0

∫
{W>0}

S(b, φ; t′) db dφ dt′ (4.14)

= −
∫ t

0

∫
{W>0}

∇(b,φ) · F (b, φ; t′) db dφ dt′ (4.15)

=
∫ t

0

∫
{φ=φmin}

Fφ(b, 0; t′) db dt′ ≈
∑

t′

∑
i

Fφi,j=0(t
′)

	φ
	t′, (4.16)

where the second equality follows from time integrating (4.2) and the final equality follows
from Green’s theorem and the fact that the mixing flux F vanishes on the boundary of
the {W > 0} region except on the surface φ = φmin where environmental fluid enters the
volume distribution via entrainment. The numerical calculation of E using the discrete
form of the mixing flux distribution Fφij is given by (4.16).

A common definition of an ‘entrainment profile’ with respect to height is the fractional
volume (or mass) increase with height (e.g. de Rooy et al. 2013). This is not a useful
definition in the case where the plume overturns, since the rate of change with height
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captures multiple components of the plume which act to entrain fluid in (potentially)
different ways. Exploiting the linear increase of buoyancy with height in the initially
linearly stratified environment, we treat buoyancy as a rough proxy for height and define
an entrainment profile with respect to buoyancy

e(bi, t) =
∫ t

0
Fφ(bi, 0; t′) dt′ ≈

∑
t′

Fφi,j=0(t
′)

	φ	b
	t′, (4.17)

which represents the volume of environmental fluid entrained up to time t per unit
buoyancy. We can then define the volume entrained into a region R of buoyancy-tracer
space which intersects the φ = φmin boundary as

E(R, t) =
∫ t

0

∫
{φ=φmin}∩R

Fφ(b, 0; t′) db dt′ =
∫

{φ=φmin}∩R
e(b, t) db, (4.18)

which is numerically calculated by summing over the indices i in (4.17) which belong to
the intersection of R with the boundary φ = φmin. We define the entrainment rate as the
time rate of change of the entrained volume into a region R, i.e. Ė(R) = ∂tE(R). This
quantifies the rate at which volume is entrained into a physical volume represented by a
region R in buoyancy-tracer space. Whilst we expect vigorous mixing at the boundary
between a sub-volume of the plume and the environment to result in entrainment, the
entrainment rate Ė does not necessarily quantify this since larger volumes would be
expected to entrain more volume over time even if the ‘strength’ of the mixing is
weaker. To quantify the strength of the entrainment into each sub-volume of physical
space corresponding to a partitioning of buoyancy-tracer space, we define the specific
entrainment rate as the ratio of the entrainment rate with the volume of each sub-region
itself, i.e. Ė(R)/V(R) for each region R = U , T ,A.

Figure 11 shows the evolution of the entrainment profile through the simulation.
Significant entrainment occurs over a large range of intermediate buoyancy values,
indicating that most entrained volume is from the environmental fluid surrounding
the intrusion. Using the partitioning introduced in § 4.6, the entrained volume can be
decomposed into the volume entrained into the plume cap E(T ), the volume entrained
into the intrusion E(A) and the volume entrained just before penetrating the stratified
layer E(U). Figure 12(a) shows the entrained volume as well its decomposition. Here, a
correction has been made to E(t) to account for numerical artefacts – see Appendix B
for details. Figure 12(b) shows the entrainment rate in each of the regions U ,A and
T . The relative contribution of plume cap entrainment and ‘lateral’ entrainment in the
intrusion to the overall entrainment is noted as an open question in the study of fountains
by Hunt & Burridge (2015), where the plume cap is analogous to the ‘fountain top’. Here,
we find that the contribution to the entrained volume from the plume cap (class T) is
weak compared with the intrusion (class A) when in QSS. Under the definition of QSS
for this flow given in § 4.5, volume continuously accumulates in the intrusion and hence
the volume of the intrusion dominates the volume of the full plume at late times. Since
the intrusion spreads radially, there is a greater contact area between the intrusion and the
surrounding environmental fluid compared with the plume cap and the rising plume. This
allows a greater volume of environmental fluid to be entrained into the intrusion. This
suggests that entrainment of environmental fluid from the lower part of the stratified layer
into the intrusion is important for setting the centre of mass of the QSS buoyancy-tracer
distribution. However, mixing during the overturning process in the plume cap near zmax
is important for setting the maximum accessible buoyancy of the volume distribution after
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Ė(A)/V(A)
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Figure 12. (a) Volume of environmental fluid entrained up to time t (black line) and its decomposition into
entrainment into the regions U ,T and A (coloured lines). These regions are defined in § 4.6 and the entrained
volumes E(U),E(T ) and E(A) are computed using (4.18). (b) Specific entrainment rate in each class, defined
as the ratio of the rate of change of the entrained volume and the volume, e.g. Ė(U)/V(U). In both plots, the
vertical dotted line indicates the start of the QSS.

mixing, and therefore the extent of the accumulation region in buoyancy-tracer space. The
specific entrainment rate is larger in class T than in class A, indicating stronger mixing
with the environment in the plume cap in QSS compared with the intrusion.

4.8. Three-stage mixing process
Together, the results presented in this section suggest a multi-stage mixing process in QSS
convective penetration. This is summarised in figure 13, in which we show schematics
of the volume distribution partitioned into three regions U , T and A of buoyancy-tracer
space, and the corresponding classes of fluid in cross-sections of the plume. Fluid moves
through each stage of mixing from left to right, corresponding with an increasing value of
the net mixing effect M, though occasionally the primary mixing stage may be skipped –
see following discussion. In each stage, the convex envelope of fluid involved in mixing
is indicated by a grey dashed line in (b, φ)-space; arrows in (b, φ)-space indicate the
movement of individual fluid parcels due to the mixing process; and circular arrows in
the x − z cross-section indicate the location of mixing in physical space. These circular
arrows are illustrative and are not intended to indicate the physical nature of the mixing
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mechanism in each stage. In the secondary mixing stage where multiple mixing processes
occur simultaneously, three arrow types are shown which correspond between physical and
buoyancy-tracer space. The mixing stages in QSS convective penetration are as follows:

(i) Mixing within the rising plume as undiluted plume fluid penetrates into the
stratified layer. This fluid is shielded from the surrounding environment. Thus,
in buoyancy-tracer space, internal mixing of undiluted plume fluid acts within U
only, homogenising the distribution and consequently moving fluid towards the
centre of mass of class U indicated by the blue triangle in figure 10. This sets the
buoyancy-tracer characteristics of plume fluid that is first exposed to environmental
fluid near zmax.

(ii) Primary mixing between the plume and environment occurs in the plume cap. This
mixing may extend below the plume cap into the intrusion as the mixing time scale is
slow compared with the dynamical time scale. In buoyancy-tracer space, the primary
mixing stage acts on the undiluted plume fluid concentrated near the class U centre
of mass and the surrounding environmental fluid with values of buoyancy close
to b = zmax. The resulting mixtures are transported towards intermediate values of
buoyancy as indicated by the mixing flux distribution in figure 9(a).

(iii) After primary mixing with the environmental fluid, subsiding mixed fluid joins the
intrusion and homogenises with its surroundings, moving from class T to class
A (dashed arrows). A number of mixing processes act on the fluid accumulating
in class A. In buoyancy-tracer space, mixing occurs between four regions of fluid
as indicated by the convex envelope in figure 13. Secondary mixing with the
environment occurs as environmental fluid lower in the stratified layer is entrained
into the intrusion as it spreads (solid arrows), dominating the volume entrained by
the full plume at late times. At the edges of the rising plume, undiluted plume
fluid mixes with fluid already in the intrusion, resulting in some fluid parcels
moving directly from class U to class A without entering the primary mixing stage
(dotted arrows) as seen in figure 9(a). Finally, mixing in the interior of the intrusion
homogenises the buoyancy-tracer distribution of fluid that accumulates within region
A. As fluid moves radially, large volumes of fluid in class A are concentrated near
the centre of mass in (b, φ)-space, where M (and W) are largest.

5. Mixing diagnostics

In this section we use the partitioning introduced in § 4 to examine the statistics of mixing
in each stage of the plume evolution.

5.1. Characterising mixing
To characterise the physical nature of the mixing in each stage, we consider the mixing
efficiency which relates the total energy expended in turbulent mixing with the actual
mixing achieved (e.g. Davies Wykes, Hughes & Dalziel 2015). The most useful definition
depends on context, e.g. Gregg et al. (2018) for oceanographic contexts and Chemel &
Staquet (2007) for an atmospheric setting. In buoyancy-driven stratified flows, the mixing
efficiency is quantified by utilising the partitioning of potential energy into available
potential energy (APE) and background potential energy (BPE). For an incompressible,
Boussinesq flow BPE is the potential energy that is not available to do work whilst
APE represents the energy stored in the buoyancy field if the flow is not in gravitational
equilibrium (Lorenz 1955; Davies Wykes et al. 2015). Turbulent mixing irreversibly
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Figure 13. Schematic of the three-stage mixing process in QSS convective penetration of a buoyant plume
into a stably stratified layer, identified by the partitioned buoyancy-tracer volume distribution. Buoyancy-tracer
space is shown on the top row, with arrows indicating the movement of volume within each mixing stage.
The region of buoyancy-tracer space affected by mixing in each stage is indicated by a grey dashed envelope.
Physical space is shown on the bottom row with circular arrows indicating where mixing is located. In the
secondary mixing stage the three distinct mixing processes are shown as dotted, dashed and solid arrows, both
in physical and buoyancy-tracer space.

converts APE into BPE and results in dissipation of turbulent kinetic energy (TKE). The
conversion of APE into BPE quantifies the energy expenditure that results in mixing of the
buoyancy field and its sum with the TKE dissipation represents the total energy expended
by turbulent mixing. The ratio of these two quantities forms the mixing efficiency.
Following Howland, Taylor & Caulfield (2020) and Holliday & McIntyre (1981), in the
case where ∂zb is constant in the initial stratified environment we may treat the quadratic
form of the potential energy

Ep = 1
2 〈b′2〉, (5.1)

as a proxy for APE. Here, b′(x, t) = b(x, t)− z is the departure from the linear initial
stratification and 〈·〉 denotes a volume average. We refer to Ep as the perturbation potential
energy (PE). A full derivation of the perturbation PE budget is given in Appendix E,
which follows the derivation as described in Howland et al. (2020) except with SGS
terms included. The irreversible conversion of perturbation PE to BPE that results from
the reduction of buoyancy gradients by mixing is captured by the buoyancy variance
dissipation rate

χ̄ =
〈
κtot |∇b′|2

〉
, (5.2)

where κtot = (RePr)−1 + κ
(b)
SGS is the total diffusivity of buoyancy. The buoyancy variance

dissipation rate represents the primary sink of Ep. The total energy dissipated via turbulent
mixing is the sum of χ̄ and the dissipation rate of TKE

ε̄ =
〈
νtot

∂ui

∂xj

∂ui

∂xj

〉
, (5.3)
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where νtot = Re−1 + νSGS is the total viscosity. The TKE dissipation rate acts as the
primary sink of TKE. The instantaneous mixing efficiency η is then

η = χ̄

χ̄ + ε̄
, (5.4)

as in e.g. Howland et al. (2020) and Peltier & Caulfield (2003). Here, we use an overbar to
denote a volume averaged quantity. It is instructive to examine the spatial structure of the
dissipation rates. In particular, regions of large χ indicate intense buoyancy gradients and
regions of large ε indicate intense turbulent motion.

Further information on the state of turbulence in stratified flows is often drawn from the
buoyancy Reynolds number Reb ≡ 〈ε〉/νN2. We define a pointwise activity parameter I
and its mean Ī

I =
∂ui

∂xj

∂ui

∂xj∣∣∣∣∂b
∂z

∣∣∣∣ = ε

νtot

∣∣∣∣∂b
∂z

∣∣∣∣ , Ī = 〈ε/νtot〉〈∣∣∣∣∂b
∂z

∣∣∣∣〉 . (5.5a,b)

The bulk property Ī is analogous to Reb except with SGS contributions to viscosity
included. Also, we replace the global buoyancy time scale N−1 with a local measure of
the buoyancy time scale |∂zb|−1 given by the local buoyancy gradient. This is a more
appropriate measure since buoyancy gradients within the plume differ significantly from
the background linear stratification and are more representative of the regime in which
mixing occurs inside the plume. As with Reb, the mean activity parameter Ī can be
interpreted as the ratio of the destabilising effects of turbulent stirring to the stabilising
effects of buoyancy and viscosity. Similarly, I may be treated as the ratio of the (local)
buoyancy time scale (∂b/∂z)−1/2 to the time scale of development of turbulent effects
(ε/νtot)

−1/2 (Ivey, Winters & Koseff 2008). Regions of large I indicate active turbulence
(García-Villalba & del Álamo 2011) that is weakly affected by stratification.

5.2. Results and discussion
Cross-sections in physical space of the dissipation rates ε and χ , activity parameter I and
local buoyancy gradient ∂zb are shown in figure 14. These diagnostics are only shown
in the plume, where φ > φmin. In the surrounding environment, buoyancy contours are
shown. The mixing diagnostics within the plume structures identified by classes U, T and
A are quantified by histograms separated into each class in figure 15. The colours for each
class correspond with those used in § 3 (e.g. figure 13). The black dashed lines show the
histograms for the full plume, i.e. all fluid within the stratified layer where φ > φmin. This
full histogram is normalised to form a p.d.f. The partitioned histograms are scaled so that
the sum of the class U, T and A histograms equals the full plume p.d.f. These histograms
are summarised by volume averages of the mixing diagnostics within each class, as well
as the full plume volume average, in table 2.

The histograms for TKE dissipation in figure 15(a) and buoyancy variance dissipation in
figure 15(c) are further separated based on where νSGS and κSGS, respectively, are non-zero
or vanish. This distinction is made since the total viscosity νtot and total dissipation κtot
are bimodal with a peak where the SGS contribution vanishes (where the simulation
effectively switches from LES to direct numerical simulation, such that νtot and κtot
reduce to the molecular values) and a peak where the SGS contribution is non-zero –
see figures 15(b) and 15(d). The separation of the histograms based on non-zero and zero
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Figure 14. The x − z cross-sections of the mixing diagnostics ε, χ, I and ∂zb within the plume, where
φ > φmin at non-dimensional time t = 14. Mixing diagnostics are defined in § 5.1. Cross-sections are taken
at the plume centreline. Buoyancy contours are shown outside the plume.

Full plume Class U Class T Class A

Volume % 100 3.64 9.88 8.65
Activity parameter Ī 16.8 81.6 18.8 12.8
Vertical buoyancy gradient 〈|∂zb|〉 1.29 1.41 2.88 1.11
TKE dissipation rate ε̄ 0.0466 0.347 0.127 0.0247
Buoyancy variance dissipation rate χ̄ 0.0238 0.0595 0.129 0.0103
Instantaneous mixing efficiency η 0.339 0.147 0.504 0.294

Table 2. Volume-averaged mixing quantities ε, χ, I, ∂zb and mixing efficiency η defined in § 5.1 at t = 15.
Averages are computed over the full plume and within class U, T and A. The percentage of the full plume
volume associated with each class is given to indicate the relative contribution of each class to the full plume
average.

SGS contribution demonstrates that the bimodality of the histograms for ε and χ is a
consequence of the bimodal total viscosity and diffusivity alone. The vertical buoyancy
gradient histogram is shown on a logarithmic scale since the most extreme values are rare
but remain important for mixing.

The results show that the mixing statistics are quantitatively different in each class,
suggesting that the mixing regimes differ in each of the three stages of the plume evolution
highlighted in § 4.8. The cross-sections in figure 14 show that TKE dissipation ε is
particularly large in the rising undiluted plume and in some regions of the plume cap. This
is supported by the histograms which show that TKE dissipation is an order of magnitude
larger in class U and T compared with class A. The activity parameter is also largest in
the rising undiluted plume but comparable in the plume cap and intrusion. The largest
values (both positive and negative) of the vertical buoyancy gradient ∂zb are found in
the plume cap (class T) with a clear positive bias. The relatively tighter spread of the ∂zb
distribution in class U in figure 15( f ) suggests that smaller vertical buoyancy gradients are
more common in the undiluted plume fluid as compared with the plume cap and intrusion.
This explains the increased magnitude of the activity parameter in class U compared with
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Figure 15. (a,c,e, f ) Histograms of the mixing diagnostics ε, χ, I and ∂zb defined in § 5.1 (black dashed line)
decomposed into histograms within class U, T , A (coloured lines). The histograms within each class are
scaled so that their sum is the histogram of the full plume. In (a,c), the histograms are further separated
into those with νSGS = 0 and κ(b)SGS = 0 (light colours) and with νSGS and κSGS non-zero (usual colours).
(b,d) Histograms of the total viscosity νtot and total buoyancy diffusivity κtot respectively. All histograms are
computed at t = 15. All vertical axes show the scaled histogram frequency. The scaling is such that the total
area is unity for the full plume histograms and the sum of the partitioned histograms equals the full plume
histogram. Similarly in (b,d) the frequency is scaled so that the total area is unity.

class T despite similar magnitudes of TKE dissipation; ε is large in both classes but ∂zb
is generally larger in class T and hence I, proportional to the ratio ε/∂zb, is smaller in
class T . The strongest buoyancy gradients as measured by χ are found in the primary
mixing region (class T), where fluid overturns and subsides fluid in the plume cap. Intense
buoyancy gradients are also found in the rising column of undiluted plume fluid, but χ
is more sparse here than in the plume cap. The strong buoyancy gradients found at the
top edge of the plume cap are a result of the relatively less buoyant plume impinging on
the more buoyant surrounding environmental fluid. Note that the largest values of χ at the
extreme positive tail of the full plume p.d.f. are almost all from class T .

We summarise the mixing regimes described by the mixing diagnostics as follows.
In class U, we find active turbulence with large dissipation of TKE, consistent with the
undiluted plume being unaffected by the surrounding stratified environment due to the
shielding effect. Since the undiluted plume fluid becomes well mixed during its rise
through the uniform layer, there are relatively small buoyancy gradients. As a result,
there is relatively little PE dissipation. In class T , rising plume fluid impinges upon the

997 A48-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

66
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.662


Tracer transport in convective penetration of a stable layer

more buoyant surrounding environmental fluid, generating particularly strong vertical
buoyancy gradients. Horizontal buoyancy gradients are also generated by overturning.
Turbulence advected upwards in class U is carried over into class T but gradually
suppressed by the intense buoyancy gradients present in the plume cap, thus reducing
the activity parameter. As the turbulent motion stirs these buoyancy gradients, significant
PE dissipation occurs and consequently a large mixing efficiency is achieved, around
50 %. Finally in class A, which eventually dominates the volume of the full plume
as the intrusion grows, the interior of the intrusion becomes well mixed resulting in
weak buoyancy gradients. There is some indication of a weak stratification and layering
forming within the intrusion. Secondary mixing processes between the intrusion and
environmental fluid at the bottom of the stratified layer can introduce larger vertical
buoyancy gradients and result in some PE dissipation. Overall, TKE dissipation is weak as
the buoyant forces driving turbulent motion are weakened by earlier mixing. Whilst both
TKE and PE dissipation are weak in class A, they are of similar magnitude and hence a
greater mixing efficiency is achieved compared with class U. This could be attributed
to the continued entrainment of environmental fluid above and below the intrusion,
introducing small-scale buoyancy gradients which are acted upon by the weak turbulent
motion.

6. Conclusions

In this paper we have analysed a LES of a buoyant pure plume penetrating into a linearly
stably stratified layer. We have outlined the buoyancy-tracer volume distribution formalism
to examine tracer transport via turbulent mixing. Using this formalism, we developed a
method for objectively partitioning buoyancy-tracer space into three regions based on the
net change in volume due to mixing. Each of these regions identifies corresponds with
a class of fluid lying in coherent regions of the plume in physical space. The method
distinguishes undiluted plume fluid (class U) from mixtures of plume and environmental
fluid. Mixed fluid is further partitioned into newly generated mixtures in the plume cap
that are actively mixing with the environment (class T), and fluid in the radially spreading
intrusion that has already undergone significant mixing (class A). In buoyancy-tracer
space, the intrusion corresponds with an accumulation region (corresponding with class A)
where volume collects and homogenises. Active mixing with the environment in the plume
cap moves volume from the source region, through a transport region (corresponding with
class T), into the accumulation region. The accumulation region represents the majority
of the plume volume at late times. To quantify the mixing regime in each class of fluid,
we use the buoyancy variance dissipation rate, TKE dissipation rate, vertical buoyancy
gradient and an activity parameter as diagnostic variables in each sub-volume of the plume.
The instantaneous mixing efficiency is also calculated by treating the buoyancy variance
dissipation rate as a proxy for the energy dissipated in turbulent mixing that actually results
in mixing of buoyancy.

Our results demonstrate a three-stage mixing process in QSS penetration of a plume
into a stably stratified layer. In the first ‘plume mixing’ stage (class U), turbulence
within the undiluted rising plume homogenises the buoyancy-tracer distribution as fluid
rises into the stratified layer. The turbulent motion near the centreline of the plume
is relatively unaffected by the surrounding stratification owing to a shielding effect
from the plume edge and surrounding intrusion. This homogenisation process sets the
range of buoyancy and tracer concentration which is first exposed to the environment
when fluid overturns near the maximum penetration height. The ‘primary mixing’ stage
occurs as rising fluid impinges on the more buoyant environment, establishing intense
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buoyancy gradients in the plume cap (class T). The mixing of undiluted plume fluid with
the surrounding environment near zmax has a particularly large mixing efficiency. The
maximum penetration height approximately determines the buoyancy of the environmental
fluid involved in the primary mixing stage and sets the extent of the buoyancy-tracer
convex envelope for the remainder of the mixing process. As newly generated mixed
fluid joins the intrusion and homogenises with fluid already in the intrusion (class A),
the intensity of turbulence decreases and buoyancy gradients weaken. Several secondary
mixing processes occur in the intrusion. This includes the entrainment of environmental
fluid surrounding the intrusion, and mixing with small amounts of undiluted plume fluid
at the edge of the rising plume that immediately join the intrusion without entering
the plume cap. The volume of environmental fluid entrained into the intrusion during
QSS dominates the volume into the plume as a whole at late times, but entrainment
in the plume cap is ‘strongest’ in the sense of the largest fractional rate of increase in
volume.

The statistical properties of turbulence are different in each of the three stages. The
undiluted plume core is the most turbulent (as measured by the activity parameter) with
TKE dissipation significantly larger than PE dissipation. In the plume cap, the intense
buoyancy gradients result in large PE dissipation and small TKE dissipation and hence
the entrainment of the surrounding environment achieves a large mixing efficiency, with
around 50 % of the total energy dissipated by turbulence resulting in mixing. As mixed
fluid homogenises in the intrusion and further environmental fluid is entrained, weak
buoyancy gradients are continually introduced and eroded by weak turbulence with low
TKE dissipation. The mixing efficiency in the intrusion is moderately large, though
smaller than in the plume cap.

Models of convective penetration which cannot resolve the processes responsible
for mixing and entrainment must parameterise the effects of mixing on the flow. The
markedly different statistics in each class suggest that each stage of mixing should be
parameterised separately. Parameterisations of mixing in convective penetration could
exploit the changing proportion of the full plume volume in each sub-region. For example,
at early times before the formation of an intrusion, the plume is dominated by undiluted
plume fluid in the plume core with intense turbulence but the mixing efficiency is small.
At late times as fluid accumulates in the intrusion, the plume volume is dominated by the
intrusion with weaker buoyancy gradients and turbulence and a greater mixing efficiency.
Therefore the turbulent statistics associated with the full plume volume must change over
time.

The partitioning method presented here, as well as the buoyancy-tracer volume
distribution formalism as a whole, offers a way to analyse mixing in numerical
simulations of stratified flows. Physical arguments can be made that restrict the regions
of buoyancy-tracer space accessible via mixing and consideration of terms in the volume
distribution budget equation (4.2) highlight the mixing processes that occur and the
resulting tracer transport.
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Appendix A. Plume generation method

In § 2 we introduce the numerical set-up for investigating convective penetration of a
buoyant plume into a stably stratified layer. The buoyant plume is generated in a small
forcing region at the bottom of the domain with the plume centreline at the middle of
the computational domain, x = y = 0. We use a volumetric forcing method in which the
vertical velocity, buoyancy and tracer concentration are relaxed towards prescribed profiles
in the shallow forcing region indicated in figure 1. The prescribed profiles are chosen
to be the far-field solutions of the Morton et al. (1956) (henceforth MTT) axisymmetric
plume equations for a pure plume with source radius r0 and integral source buoyancy flux
F0 = 2

∫ ∞
0 w̄b̄|z=−Hr dr. The plume carries a passive tracer with a source tracer

flux that has a dimensional value identical to the source buoyancy flux, i.e. in
non-dimensional terms F(φ)0 = 2

∫ ∞
0 w̄φ̄|z=−Hr dr = BF0 where B = LT−2 and this

excludes the normalisation of φ by its source value on the plume centreline which is
performed in post-processing. The term ‘pure’ plume refers to the relationship between
the source fluxes and is quantified in terms of the flux-balance parameter Γ introduced by
Morton (1959) and defined as

Γ = 5FbQ2

8αM5/2 , (A1)

where α is the entrainment coefficient and the integral volume flux Q, specific momentum
flux M and buoyancy flux Fb are defined as

Q = 2
∫ ∞

0
w̄ r dr, M = 2

∫ ∞

0
w̄2 r dr, Fb = 2

∫ ∞

0
w̄b̄ r dr, (A2a–c)

where ·̄ denotes an azimuthal and time average. Note that in Appendices A and B only
we use M,Fb (and Fφ in Appendix B) to refer to these integral fluxes, consistent with the
notation used in the literature (e.g. Hunt & Kaye 2005; van Reeuwijk et al. 2016). A forced
plume, in which there is an excess of momentum relative to the buoyancy forcing, has
0 < Γ < 1 and the special case of a pure plume in which the momentum and
buoyancy fluxes are balanced has Γ = 1. The pure plume state is stable to
perturbations in the amount of buoyancy supplied (Hunt & Kaye 2005). The vertical
profiles rm(z),wm(z), bm(z), φm(z) for the radius, vertical velocity, buoyancy and tracer
concentration in the set-up we consider are

rm(z) = 6
5α(z + H − zv), (A3)

wm(z) = 5
6α

(
9
10
αF0

)1/3

(z + H − zv)−1/3, (A4)

bm(z) = 5F0

6α

(
9
10
αF0

)−1/3

(z + H − zv)−5/3, (A5)

φm(z) = 5F(φ)0
6α

(
9
10
αF(φ)0

)−1/3

(z + H − zv)−5/3, (A6)
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where zv = −(5/6α)r0 is the virtual origin (which ensures a source radius r0) and
α = 0.11 is the entrainment coefficient. Since the source tracer flux is the same as the
source buoyancy flux, and b and φ evolve identically in the uniform layer up to a linear
factor, the profile φm(z) used for the passive tracer is the same as the profile bm(z) used for
the buoyancy except with F0 replaced by F(φ)0 .

The full structure towards which the vertical velocity, buoyancy and tracer concentration
are forced uses the vertical profiles (A3)–(A6) with Gaussian radial profiles of width rm(z).
Gaussian profiles have been shown to approximate experimental data well (List 1982;
Papanicolaou & List 1988; Shabbir & George 1994). Tests were carried out with various
other radial profiles at the source, all of which result in a Gaussian profile in w, b and φ
far from the source (but below the stratified layer) where the plume is fully developed. The
forcing on w, b and φ is then

fw(x, t) = 1
τ

[
w(x, t)− 2wm(z) exp

[
−2

x2 + y2

rm(z)2

] (
1 + 1

10
ξ(t)

)]
fm(z), (A7)

fb(x, t) = 1
τ

[
b(x, t)− 2bm(z) exp

[
−2

x2 + y2

rm(z)2

] (
1 + 1

10
ξ(t)

)]
fm(z), (A8)

fφ(x, t) = 1
τ

[
φ(x, t)− 2φm(z) exp

[
−2

x2 + y2

rm(z)2

] (
1 + 1

10
ξ(t)

)]
fm(z), (A9)

where ξ(t) is a random number between −1 and 1, used to apply uncorrelated 10 %
perturbations to the prescribed profiles at each step (note that the same perturbation is not
used for all profiles), to initiate turbulence. The factor 1/τ controls the coupling strength
with the momentum equations. The size of τ is arbitrary other than being small enough to
control against dynamical variation and large enough to avoid numerical instability. The
function fm(z) constrains the forcing to a thin layer at the base of the domain. We use

fm(z) = 1
2

(
1 − tanh

(
z + H − Lc

Lp

))
, (A10)

where Lc is the depth of the forcing region above z = −H and Lp controls how sharply
the forcing decays above z = −H + Lc. As illustrated in figure 1, fm(z) ≈ 1 for z �
−H + Lc and fm(z) ≈ 0 for z � −H + Lc. Whilst the forcing is applied across the entire
domain, fm(z) limits the depth in which the forcing is non-zero and the exponential
factor in (A7), (A8) and (A9) constrains the forcing to small radii x2 + y2 � rm(z)2. An
additional perturbation is applied to each velocity component in the two grid layers above
z = −H + Lc to initiate turbulence, which develops as the plume rises through the uniform
layer. We ensure that the plume has reached self-similarity (i.e. the turbulence and plume
structure are fully developed) before penetrating the stratified layer – see figure 18 in
Appendix B.

The forcing method detailed here is non-standard. We found the typical method of
generating a buoyant plume with a simple buoyancy gradient on the bottom boundary
(e.g. Pham et al. 2007; van Reeuwijk et al. 2016) to be unsuitable owing to pinching
of the plume radius close to the bottom boundary where inflow dominates the diffusive
boundary buoyancy flux. Pinching reduces control of the source radius and results in
excessive numerical artefacts due to the horizontal pseudo-spectral method. Validation
of the forcing method detailed here and the numerical scheme detailed in § 2 is discussed
in Appendix B.
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Figure 16. Buoyancy-tracer volume distribution W(b, φ; t), detailed in § 4, at t = 10 in three simulations
with resolution 1282 × 129, 2562 × 257, 5122 × 513 and 10242 × 1025 left to right.

Appendix B. Validating the numerical method

B.1. Resolution sensitivity test
We study the problem presented here using LESs. Given the sub-grid scales are
parameterised in LES, it is necessary to validate the model to ensure that the quantities of
interest are sufficiently well resolved and that the results are not strongly dependent on the
model resolution. Here, our primary focus is on the volume distribution in buoyancy/tracer
space. Figure 16 shows the volume distribution W(b, φ; t) at non-dimensional time
t = 10 for the simulations discussed in § 2 at three resolutions, 1282 × 129, 2562 × 257,
5122 × 513, and 10242 × 1025, with all other aspects of the simulation set-up fixed. To aid
comparison, W is normalised by the full plume volume

∑
ij Wij(t) (see § 4.1). The structure

of the distribution is similar at all resolutions. There is some noise in the distribution at
lower resolution, since the smaller number of grid cells offers a smaller sample of the
values of buoyancy and tracer concentration. The only element of the volume distribution
structure that notably changes with resolution is the extent of the source line where b ∝ φ.
This can be attributed to poor representation of the forcing profile at lower resolution; in
the forcing region (see figure 1) the plume is thin compared with the width of the domain.
This means relatively few grid points cover the plume at lower resolution and hence the
forcing profile is poorly captured, in particular the maximum values of b,w and φ on the
plume centreline are reduced. Therefore, the forcing profile that is achieved often has a
smaller associated buoyancy and tracer source flux than the value F0 prescribed for the
simulation and hence the extent of the source line in buoyancy-tracer space is reduced.
This is easily accounted for by increasing the prescribed value or decreasing the forcing
relaxation time scale τ (see Appendix A). In § 3 we report the value of F0 computed
from the simulation which suitably represents the plume forcing profiles achieved (see
Appendix A for a detailed discussion of the forcing method).

B.2. Numerical artefacts
In the horizontal pseudo-spectral numerical scheme used by DIABLO, the spectral cutoff
filter introduces unphysical oscillations in the scalar fields throughout a horizontal level
in response to sharp gradients on the same horizontal level. This is known as Gibbs
ringing (e.g. DeBonis 2019) and is qualitatively similar to the oscillations that arise in the
Fourier series representation of a finite step function using a finite number of modes. In the
simulation we present, these oscillations are relevant in two locations where particularly
strong gradients of b and φ arise. Firstly, at the top of the uniform layer before the plume
penetrates the stratified layer. Here, b and φ remain large on the plume centreline (and
confined to small radii) whilst they vanish in the surrounding environment, resulting in
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Figure 17. Integral volume flux Q, specific momentum flux M, buoyancy flux Fb and tracer flux Fφ defined in
(A2a–c) and (B2) shown in the uniform layer z � 0. Simulation data shown in blue and theoretical predictions
for a pure plume (using vertical profiles given in (A3)–(A5) with a Gaussian radial profile) shown in red. Range
of heights for which radial profiles are shown in figure 18 indicated by grey dashed lines.

steep gradients in both scalar fields. Note this ringing is present throughout the uniform
layer and can be observed in figure 2 at the bottom of the domain in particular, but does
not have a significant impact on the plume on average (see azimuthally averaged profiles
in figure 18) nor on the simulated buoyancy and tracer fluxes (see figure 17). Secondly,
above the intrusion the plume width is small compared with the size of the domain and the
plume buoyancy is significantly smaller than the surrounding environment, creating steep
gradients in the buoyancy field in particular. The resulting oscillations imprint on the value
of the buoyancy in the plume, shifting a small amount of volume away from the source
line in buoyancy-tracer space and producing a ‘bulge’ in the volume distribution W. This is
evident in figure 16, particularly panels (c,d). Whilst the effect appears prominent (owing
to the colour map), this bulge contains only 0.77 % of the full plume volume at t = 10 in
the 5122 × 513 simulation presented in the main paper. The numerical scheme conserves
total tracer concentration in the absence of sources and sinks, though difficulties arise in
calculating the plume volume that enters the stratified layer, since grid cells with φ < φmin
are excluded from the calculation of the source distribution S but if the oscillation reverses
sign then this tracer may be considered part of the plume. Similarly, the entrained volume
E(t) discussed in § 4.7 is underestimated due to these grid cells being excluded from the
calculation of Fφ . To account for Gibbs ringing, we therefore use the absolute value of the
buoyancy and tracer concentration fields, |b| and |φ|, to calculate the source distribution S
and the mixing flux distribution F . To aid clarity, we do not show the ‘bulge’ in the volume
distribution W or the net mixing effect distribution M in figures 6, 9 and 10, but include the
volume as part of class U when computing the volume of undiluted plume fluid V(U). The
regions in physical space corresponding to the erroneous volume are coloured according
to the corresponding value of b lying on the source line with the same value of φ, i.e. we
treat these values of b and φ as part of class U and colour them accordingly when showing
M in physical space (see figure 9).

B.3. Plume representation
We further validate our numerical method by comparing the simulated plume with the
canonical plume theory of Morton et al. (1956) and direct numerical simulations of plumes
in the literature, which themselves have been extensively compared with experimental
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studies. The integral plume theory of MTT predicts that in a buoyant plume rising from
a point source (or equivalently a source with radius r0 with a virtual origin at −zv),
the radius, vertical velocity, buoyancy and tracer concentration become self-similar with
respect to characteristic scales

rm = Q
M1/2 , wm = M

Q
, bm = Fb

Q
, φm = Fφ

Q
, (B1a–d)

where the integral volume flux Q, specific momentum flux M and buoyancy flux Fb are
defined in (A2a–c) and the tracer flux Fφ is defined as

Fφ = 2
∫ ∞

0
w̄φ̄ r dr, (B2)

where ·̄ denotes an azimuthal and time average. Note that in Appendices A and B only we
use M,Fb and Fφ to refer to these integral fluxes, consistent with the notation used in the
literature (e.g. Hunt & Kaye 2005; van Reeuwijk et al. 2016). The MTT plume equations
may be solved to find the vertical profiles of the characteristic scales in (B1a–d) for a pure
plume as given in (A3)–(A5) and from these, vertical profiles for the integral fluxes can
be computed. These theoretical predictions are compared with the simulation results in
figure 17 which demonstrates good agreement once turbulence in the plume becomes fully
developed during rise through the uniform layer.

In figure 18(a) we show vertical profiles of the time and azimuthally averaged vertical
velocity w̄, buoyancy b̄ and tracer concentration φ̄, each normalised by the relevant
characteristic scale. The profiles are from the region just below the stratified layer,
indicated by the grey dashed lines in figure 17. The evident self-similarity of the plume,
and the good convergence towards the experimentally observed radial Gaussian profile
shown in black, demonstrate that the turbulent behaviour of the plume is well represented.
This is further supported by the self-similarity of the radial momentum, buoyancy and
tracer fluxes u′w′, u′b′, and u′φ′ when normalised by the relevant scales in figure 18(b).
Here, u refers to the radial velocity and the prime notation refers to the turbulent
component. The integral theory of MTT does not make predictions for these radial fluxes
but they are in close agreement with the direct numerical simulations presented in van
Reeuwijk et al. (2016). Figure 18(c) shows the mean radial velocity ū which is also
in agreement with their direct numerical simulation but with increased spread in the
profiles owing to the periodic boundaries in our set-up, which modifies the flow into the
plume when compared with open boundaries typically used in numerical simulations of
plumes, e.g. van Reeuwijk et al. (2016). Nonetheless we show that the entrainment is well
captured by considering the mean radial specific volume flux rū in figure 18(d). The MTT
entrainment hypothesis states [ru]r=∞ = −αrmwm, where α is the entrainment coefficient,
which relates the vertical velocity with the radial inflow. The value of α computed in
our numerical simulations is shown in figure 18(d) which demonstrates the entrainment
behaviour found in experimental observations of plumes. The turbulent statistics in the
plume are further validated by following the analysis presented in van Reeuwijk et al.
(2016). For example, the precise characteristics of the turbulence are tested by calculating
the invariants of the anisotropy tensor as detailed in Lumley & Newman (1977). Our results
indicate turbulence with weak anisotropy and axisymmetry (not shown), agreeing with the
direct numerical simulations of van Reeuwijk et al. (2016).
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Figure 18. (a) Radial profiles of w̄, b̄ and φ̄. (b) Radial profiles of radial momentum flux u′w′, buoyancy flux
u′b′ and tracer flux u′φ′. (c) Mean radial velocity ū. (d) Mean radial specific volume flux rū. All data shown
in the interval −5 < z < −1 in the uniform layer, indicated by grey dashed lines in figure 17. All profiles are
self-similar with respect to the relevant scales defined in (B1a–d). In panel (d), the dashed line indicates the
value of the entrainment coefficient α calculated from a linear fit of the plume radius scale rm and z.

Appendix C. Buoyancy-tracer volume distribution evolution equation

In § 4.1 we define the volume distribution W(B, Φ; t) and its governing equation

∂W
∂t

= −∇(B,Φ) · F + S, (C1)

where F and S represent the flux and boundary source/sink of W, respectively. We derive
this evolution equation for the volume distribution W by starting with two scalar fields
b(x, t) and φ(x, t) satisfying

∂b
∂t

+ u · ∇b = ḃ, (C2)

∂φ

∂t
+ u · ∇φ = φ̇, (C3)

with ∇ · u = 0. Here, we use ḃ and φ̇ to represent general forcing terms which are replaced
in § 4.1 with the non-advective forcing on buoyancy b and tracer concentration φ. Consider
a fixed volume V in which (C2) and (C3) hold and define

gF =
∫

V
F(b, φ) dV, (C4)
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where F(b, φ) is an arbitrary function of b and φ. Then

∂gF
∂t

=
∫

V

∂F
∂b

∂b
∂t

+ ∂F
∂φ

∂φ

∂t
dV

=
∫

V

∂F
∂b

(
ḃ − u · ∇b

) + ∂F
∂φ

(
φ̇ − u · ∇φ)

dV

=
∫

V

∂F
∂b

ḃ + ∂F
∂φ
φ̇ dV −

∫
V
(u · ∇b)

∂F
∂b

+ (u · ∇φ) ∂F
∂φ

dV

=
∫

V

∂F
∂b

ḃ + ∂F
∂φ
φ̇ dV −

∫
V

∇ · (uF(b, φ)) dV, (C5)

since ∇ · u = 0. By the divergence theorem we have

∂gF
∂t

=
∫

V

∂F
∂b

ḃ + ∂F
∂φ
φ̇ dV +

∫
∂V

u · n F(b, φ) dS, (C6)

where ∂V is the boundary of V and n is the inward normal on ∂V . This forms an evolution
equation for gF . Note that we choose an inward normal so that the final term is positive
when fluid flows into V .

We now consider the specific choice F(b, φ; B, Φ) = I(b; B)I(φ;Φ) where, for a
field ψ(x, t) defined in V , I(ψ;Ψ ) is the indicator function for the subset of V where
ψ(x, t)>Ψ , i.e.

I(ψ;Ψ ) =
{

1 ψ(x, t) > Ψ

0 ψ(x, t) � Ψ.
(C7)

With this choice of F , the function gF is the volume of fluid in V with b > B and φ > Φ.
Furthermore (∂2/∂B∂Φ)gF is the ‘volume density’, i.e. (∂2/∂B∂Φ)gFδbδφ is the volume
of fluid in V with B < b(x, t) < B + δb and Φ < φ(x, t) < Φ + δφ. This leads to the
choice of name ‘buoyancy-tracer volume distribution’ for W.

We now simplify the right-hand side terms in (C6) for the choice F(b, φ; B, Φ) =
I(b; B)I(φ;Φ). We have∫

V

∂F
∂b

ḃ dV =
∫

V
ḃ δ(b(x, t)− B)I(φ;Φ) dV

=
∫

S(B,Φ)
ḃ

dS
∂b/∂m

= − ∂

∂B

∫
V

ḃ I(b; B)I(φ;Φ) dV, (C8)

where S(B, Φ) is the surface in V where b(x, t) = B and φ(x, t) > Φ, and m is the normal
to the surface S(B, Φ). Similarly,∫

V

∂F
∂φ
φ̇ dV = − ∂

∂Φ

∫
V
φ̇I(b; B)I(φ;Φ) dV. (C9)

Then the evolution equation (C6) with the choice F(b, φ; B, Φ) = I(b; B)I(φ;Φ) gives
the integral form (C10) of the evolution equation (C1), which governs the buoyancy-tracer
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cumulative volume distribution

∂

∂t

∫
V

I(b; B)I(φ;Φ) dV = − ∂

∂B

[∫
V

ḃ I(b; B)I(φ;Φ) dV
]

− ∂

∂Φ

[∫
V
φ̇ I(b; B)I(φ;Φ) dV

]
+

∫
∂V

u · n I(b; B)I(φ;Φ) dS. (C10)

The governing equation for the buoyancy-tracer volume distribution W(B, Φ; t) is
obtained by taking ∂2/∂B∂Φ of (C10) to get

∂

∂t

∫
V
δ(b(x, t)− B)δ(φ(x, t)−Φ) dV = − ∂

∂B

[∫
V

ḃ δ(b(x, t)− B)δ(φ(x, t)−Φ) dV
]

− ∂

∂Φ

[∫
V
φ̇ δ(b(x, t)− B)δ(φ(x, t)−Φ) dV

]
+

∫
∂V

u · n δ(b(x, t)− B)δ(φ(x, t)−Φ) dS.

(C11)

Since each integral is taken over the volume V , we are left with functions of B, Φ and t
alone. With the definitions

W(B, Φ; t) =
∫

V
δ(b(x, t)− B)δ(φ(x, t)−Φ) dV, (C12)

Fb(B, Φ; t) =
∫

V
ḃ δ(b(x, t)− B)δ(φ(x, t)−Φ) dV, (C13)

Fφ(B, Φ; t) =
∫

V
φ̇ δ(b(x, t)− B)δ(φ(x, t)−Φ) dV, (C14)

S(B, Φ; t) =
∫
∂V

u · n δ(b(x, t)− B)δ(φ(x, t)−Φ) dS, (C15)

then (C11) can be written as

∂W
∂t

= −∇(B,Φ) · F + S, (C16)

where F = (Fb,Fφ), which completes the derivation.

Appendix D. Numerical method for identifying the accumulation region of
(b, φ)-space

In § 4.6 we introduce a partitioning of buoyancy-tracer space into three regions. Undiluted
plume fluid corresponds with regions of buoyancy-tracer space where M(b, φ; t) < 0 in
QSS (see § 4.5). Mixed fluid in the stratified layer is identified by regions of (b, φ)-space
with M(b, φ; t) > 0. Mixed fluid is further partitioned by a threshold value m∗(t) such
that 0 < M � m∗ identifies newly generated mixed fluid, where plume fluid is actively
mixing with the environment in the plume cap; and M > m∗ identifies plume fluid which
has mixed with the environment and is accumulating in the radially spreading intrusion.
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The threshold m∗(t) is chosen to minimise the total mixing flux convergence f (m; t) of
the transport region T = {0 < M � m∗}, i.e. m∗(t) is the value m that minimises |f (m; t)|
where

f (m; t) =
∫

{0<M�m}
∂W
∂t

− S db dφ = −
∫

{0<M�m}
∇(b,φ) · F db dφ, (D1)

so that the volume that enters the region T is approximately equal to the volume leaving
T . The region A which represents the remainder of the mixed fluid must then capture the
accumulation of mixed fluid.

The numerical implementation of this method involves, at each time step k, the following
steps:

(i) identify the current maximum value of M throughout buoyancy-tracer space,
denoted M = maxi,j Mij(tk);

(ii) for each of NM test values of M, m = 0, . . . ,M, calculate

f (m; tk) ≈
∑

i,j|0<Mij�m

[
Wij(tk+1)− Wij(tk)

	t
− Sij(tk)

]
; (D2)

(iii) identify the test value m̃(tk) which minimises f (m; tk).

Then, once a threshold m̃(tk) has been chosen for each timestep tk, the final threshold
m∗(t) is chosen by applying a rolling average with an appropriate number of timesteps.
We choose NM = 200 and a rolling average width of 10 timesteps. The motivation for
applying a rolling average is to smooth the threshold m∗(t) so that the regions T and A do
not grow and shrink dramatically in response to short-term changes in the flux divergence.

Figure 19(a) shows the total flux convergence f (m; t) for all times post-penetration and
figure 19(b) shows the corresponding preliminary thresholds m̃(t) and the final thresholds
m∗(t). The total mixing flux convergence of class T for the preliminary and final thresholds
over time is shown in figure 19(c), indicating the (generally small) error introduced by
smoothing the thresholds.

Appendix E. Potential energy budget

In § 5.1 we introduce the perturbation PE Ep = 1
2 〈b′2〉 where b′ is the departure from the

initial linear stratification, i.e. b(x, t) = b′(x, t)+ z. This form of the PE may be derived
from (2.15) of Holliday & McIntyre (1981) under the assumption of a constant buoyancy
gradient in the initial stratified environment. The perturbation PE may be treated as a proxy
for APE. To examine the mixing processes in the plume we wish to identify the primary
sink of Ep in order to calculate the mixing efficiency. We must therefore form a budget
equation for the perturbation PE Ep.

We start with the governing equations (2.1)–(2.3) including the SGS terms and drop
the hat notation. Substituting the buoyancy decomposition defined above, b = z + b′, the
buoyancy evolution equation becomes

∂b′

∂t
+ w + u · ∇b′ = 1

RePr
∇2b′ + ∇ ·

(
κ
(b)
SGS∇b′

)
+ ∂

∂z
κ
(b)
SGS + fb. (E1)

Now, multiplying by the buoyancy departure from the initial stratification b′ and volume
averaging over a fixed volume V gives

dEp

dt
=

∫
∂V

[
1

RePr
+ κ

(b)
SGS

]
b′∇b′ · dS − χ̄ − Jb −

〈
b′ ∂κ

(b)
SGS
∂z

〉
, (E2)
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Figure 19. (a) Total flux divergence f (m; t) defined in (D1) and the resulting preliminary and smoothed
threshold choice in (b). Error in f from smoothing process shown in (c).

where 〈·〉 denotes a volume average over V . Note that the term involving fb has been
neglected since the buoyancy forcing vanishes above the forcing region and we will apply
this perturbation PE budget in the stratified layer. The first term on the left-hand side
represents the diffusive buoyancy flux across the boundary ∂V , which is non-zero only
where the plume penetrates the stratified layer. The second term is the volume-averaged
buoyancy variance dissipation rate

χ̄ =
〈(

1
RePr

+ κ
(b)
SGS

)
|∇b′|2

〉
, (E3)

which represents the primary sink of perturbation PE. The third term is the volume
averaged buoyancy flux

Jb = 〈b′w〉 (E4)

which represents an exchange between kinetic and PE. The last term captures the effect of
the spatially varying SGS diffusivity acting on the background stratification.

REFERENCES

ALFONSI, G. 2011 On direct numerical simulation of turbulent flows. Appl. Mech. Rev. 64 (2), 020802.
ANSONG, J.K., KYBA, P.J. & SUTHERLAND, B.R. 2008 Fountains impinging on a density interface. J. Fluid

Mech. 595, 115–139.
ANSONG, J.K. & SUTHERLAND, B.R. 2010 Internal gravity waves generated by convective plumes. J. Fluid

Mech. 648, 405–434.
BRIGGS, G.A. 1965 A plume rise model compared with observations. J. Air Pollut. Control Assoc. 15 (9),

433–438.

997 A48-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

66
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.662


Tracer transport in convective penetration of a stable layer

CARAZZO, G., KAMINSKI, E. & TAIT, S. 2008 On the rise of turbulent plumes: quantitative effects of
variable entrainment for submarine hydrothermal vents, terrestrial and extra terrestrial explosive volcanism.
J. Geophys. Res. 113 (B9), 2007JB005458.

CHEMEL, C. & STAQUET, C. 2007 A formulation of convective entrainment in terms of mixing efficiency.
J. Fluid Mech. 580, 169–178.

CHEN, C.H. & BHAGANAGAR, K. 2023 Energetics of buoyancy-generated turbulent flows with active scalar:
pure buoyant plume. J. Fluid Mech. 954, A23.

DAUHUT, T., CHABOUREAU, J.-P., ESCOBAR, J. & MASCART, P. 2015 Large-eddy simulations of hector the
convector making the stratosphere wetter. Atmos. Sci. Lett. 16 (2), 135–140.

DAUHUT, T., CHABOUREAU, J.-P., HAYNES, P.H. & LANE, T.P. 2018 The mechanisms leading to a
stratospheric hydration by overshooting convection. J. Atmos. Sci. 75 (12), 4383–4398.

DAVIES WYKES, M.S. & DALZIEL, S.B. 2014 Efficient mixing in stratified flows: experimental study of a
Rayleigh–Taylor unstable interface within an otherwise stable stratification. J. Fluid Mech. 756, 1027–1057.

DAVIES WYKES, M.S., HUGHES, G.O. & DALZIEL, S.B. 2015 On the meaning of mixing efficiency for
buoyancy-driven mixing in stratified turbulent flows. J. Fluid Mech. 781, 261–275.

DEBONIS, J.R. 2019 WRLES: wave resolving large-eddy simulation code, theory and usage. NASA/TM
2019-220192.

DEVENISH, B.J., ROONEY, G.G. & THOMSON, D.J. 2010 Large-eddy simulation of a buoyant plume in
uniform and stably stratified environments. J. Fluid Mech. 652, 75–103.

DODA, T., ULLOA, H.N., RAMÓN, C.L., WÜEST, A. & BOUFFARD, D. 2023 Penetrative convection
modifies the dynamics of downslope gravity currents. Geophys. Res. Lett. 50 (2), e2022GL100633.

GARCÍA-VILLALBA, M. & DEL ÁLAMO, J.C. 2011 Turbulence modification by stable stratification in channel
flow. Phys. Fluids 23 (4), 045104.

GREGG, M.C., D’ASARO, E.A., RILEY, J.J. & KUNZE, E. 2018 Mixing efficiency in the ocean. Annu. Rev.
Mar. Sci. 10, 443–473.

HERRMANN, M., SOMOT, S., SEVAULT, F., ESTOURNEL, C. & DÉQUÉ, M. 2008 Modeling the deep
convection in the northwestern Mediterranean Sea using an eddy-permitting and an eddy-resolving model:
case study of winter 1986–1987. J. Geophys. Res. 113 (C4), C04011.

HOLLIDAY, D. & MCINTYRE, M.E. 1981 On potential energy density in an incompressible, stratified fluid.
J. Fluid Mech. 107, 221–225.

HOWLAND, C.J., TAYLOR, J.R. & CAULFIELD, C.P. 2020 Mixing in forced stratified turbulence and its
dependence on large-scale forcing. J. Fluid Mech. 898, A7.

HUNT, G.R. & BURRIDGE, H.C. 2015 Fountains in industry and nature. Annu. Rev. Fluid Mech. 47 (1),
195–220.

HUNT, G.R. & KAYE, N.B. 2005 Lazy plumes. J. Fluid Mech. 533, 329–338.
IVEY, G.N., WINTERS, K.B. & KOSEFF, J.R. 2008 Density stratification, turbulence, but how much mixing?

Annu. Rev. Fluid Mech. 40 (1), 169–184.
JENSEN, E.J., ACKERMAN, A.S. & SMITH, J.A. 2007 Can overshooting convection dehydrate the tropical

tropopause layer? J. Geophys. Res.: Atmos. 112, D11209.
KURBATSKII, A.F. 2001 Computational modeling of the turbulent penetrative convection above the Urban

Heat Island in a stably stratified environment. J. Appl. Meteorol. 40 (10), 1748–1761.
LIST, E.J. 1982 Turbulent jets and plumes. Annu. Rev. Fluid Mech. 14 (1), 189–212.
LORENZ, E.N. 1955 Available potential energy and the maintenance of the general circulation. Tellus 7 (2),

157–167.
LUMLEY, J.L. & NEWMAN, G.R. 1977 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82

(1), 161–178.
MARSHALL, J. & SCHOTT, F. 1999 Open-ocean convection: observations, theory, and models. Rev. Geophys.

37 (1), 1–64.
MASADA, Y., YAMADA, K. & KAGEYAMA, A. 2013 Effects of penetrative convection on solar dynamo.

Astrophys. J. 778 (1), 11.
MORTON, B.R. 1959 Forced plumes. J. Fluid Mech. 5 (1), 151–163.
MORTON, B.R., TAYLOR, G.I. & TURNER, J.S. 1956 Turbulent gravitational convection from maintained

and instantaneous sources. Proc. R. Soc. Lond. A 234 (1196), 1–23.
PAPANICOLAOU, P.N. & LIST, E.J. 1988 Investigations of round vertical turbulent buoyant jets. J. Fluid Mech.

195, 341–391.
PELTIER, W.R. & CAULFIELD, C.P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech.

35 (1), 135–167.
PENNEY, J., MOREL, Y., HAYNES, P.H., AUCLAIR, F. & NGUYEN, C. 2020 Diapycnal mixing of passive

tracers by Kelvin–Helmholtz instabilities. J. Fluid Mech. 900, A26.

997 A48-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

66
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.662


C.W. Powell, P.H. Haynes and J.R. Taylor

PHAM, M.V., PLOURDE, F. & DOAN, K.S. 2007 Direct and large-eddy simulations of a pure thermal plume.
Phys. Fluids 19 (12), 125103.

PLUMB, R.A. 2007 Tracer interrelationships in the stratosphere. Rev. Geophys. 45, RG4005.
RANDEL, W.J. & JENSEN, E.J. 2013 Physical processes in the tropical tropopause layer and their roles in a

changing climate. Nat. Geosci. 6 (3), 169–176.
VAN REEUWIJK, M., SALIZZONI, P., HUNT, G.R. & CRASKE, J. 2016 Turbulent transport and entrainment

in jets and plumes: a DNS study. Phys. Rev. Fluids 1, 074301.
DE ROOY, W.C., BECHTOLD, P., FRÖHLICH, K., HOHENEGGER, C., JONKER, H., MIRONOV, D.,

PIER SIEBESMA, A., TEIXEIRA, J. & YANO, J.-I. 2013 Entrainment and detrainment in cumulus
convection: an overview. Q. J. R. Meteorol. Soc. 139 (670), 1–19.

SHABBIR, A. & GEORGE, W.K. 1994 Experiments on a round turbulent buoyant plume. J. Fluid Mech. 275,
1–32.

SINGH, H.P., ROXBURGH, I.W. & CHAN, K.L. 1994 Three-dimensional simulation of penetrative
convection-penetration above a convection zone. Astron. Astrophys. 281 (2), L73–L76.

TAYLOR, J.R. 2008 Numerical simulations of the stratified oceanic bottom layer. PhD thesis, University of
California, San Diego.

TEXTOR, C., GRAF, H.-F., HERZOG, M. & OBERHUBER, J.M. 2003 Injection of gases into the stratosphere
by explosive volcanic eruptions. J. Geophys. Res. 108 (D19), 4606.

TURNER, J.S. 1966 Jets and plumes with negative or reversing buoyancy. J. Fluid Mech. 26 (4), 779–792.
ULSES, C., ESTOURNEL, C., FOURRIER, M., COPPOLA, L., KESSOURI, F., LEFÈVRE, D. & MARSALEIX,

P. 2021 Oxygen budget of the north-western Mediterranean deep- convection region. Biogeosciences 18
(3), 937–960.

VREUGDENHIL, C.A. & TAYLOR, J.R. 2018 Large-eddy simulations of stratified plane couette flow using the
anistropic minimum-dissipation model. Phys. Fluids 30 (8), 085104.

997 A48-40

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

66
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.662

	1 Introduction
	2 Governing equations and numerical model
	3 Flow and tracer structure
	4 Buoyancy-tracer volume distribution
	4.1 Definition and properties

	5 Mixing diagnostics

